

CS255: Winter 2026

# PRPs and PRFs

Dan Boneh, Stanford University

# Recap

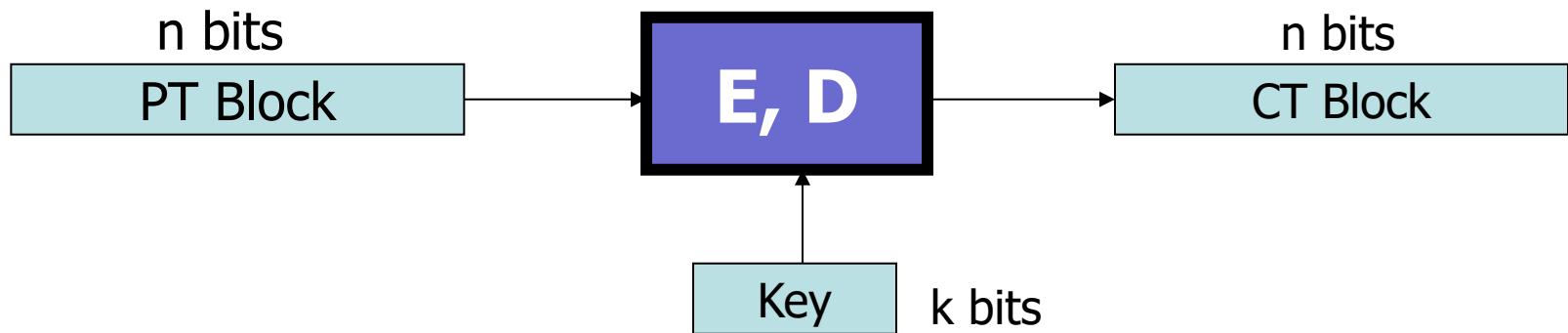
Simple stream ciphers:  
can only use key to encrypt one message

**Next goal:** ciphers where a single key can be  
used to encrypt many messages

First, block ciphers ...

# Quick Recap

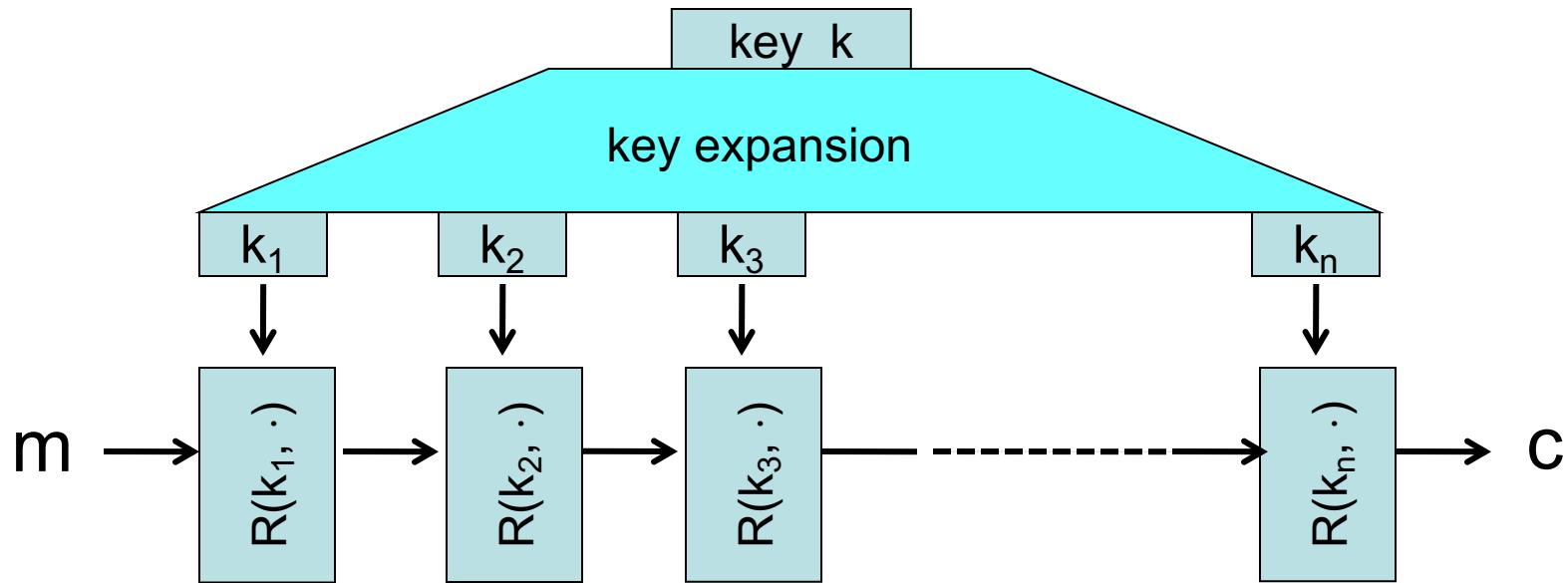
A **block cipher** is a pair of efficient algs. (E, D):



Canonical examples:

- 1. AES:** n=128 bits, k = 128, 192, 256 bits
- 2. 3DES:** n= 64 bits, k = 168 bits (historical)

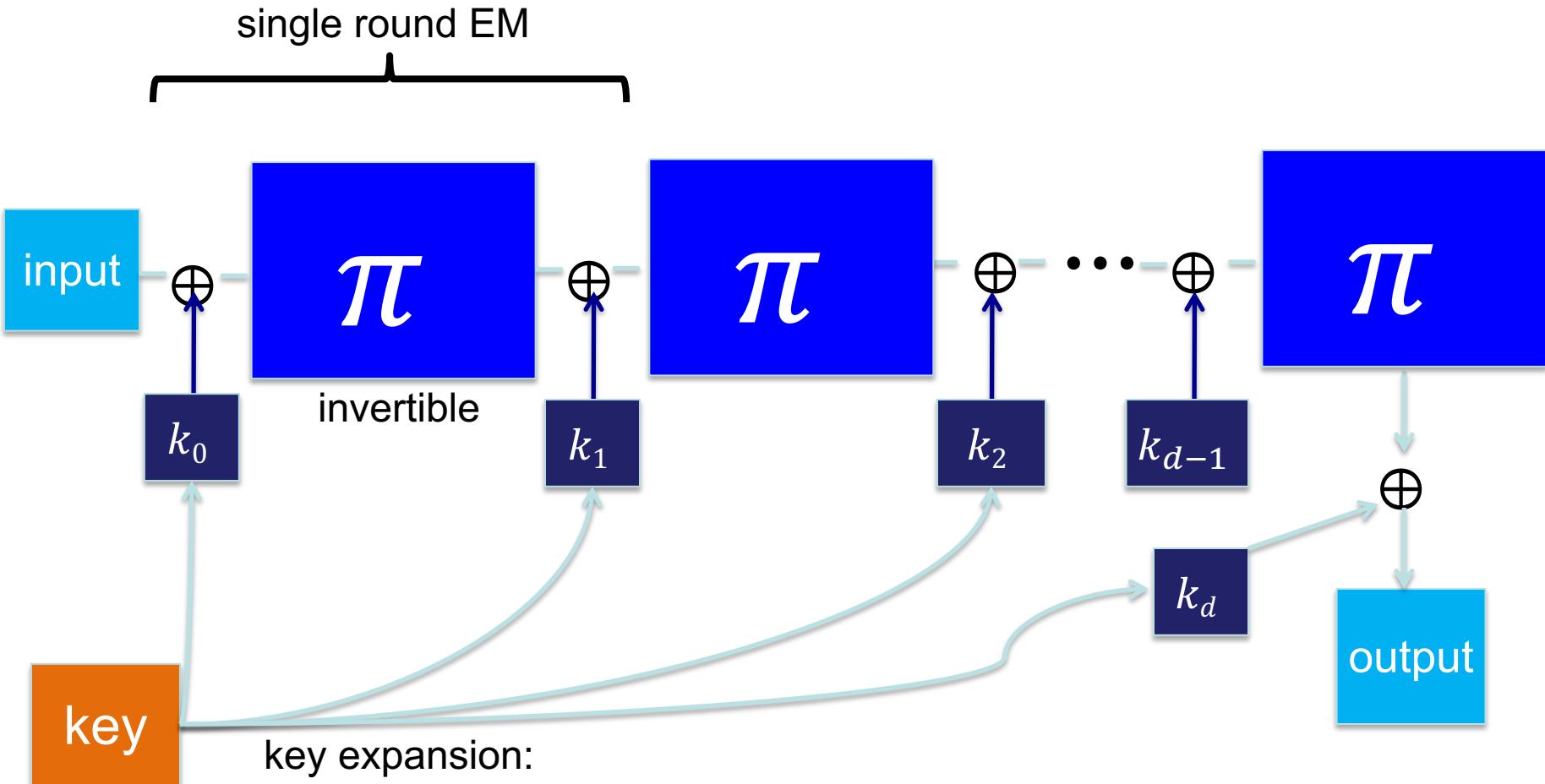
# Block Ciphers Built by Iteration



$R(k, m)$  is called a round function

**3DES:**  $n=48$ ,    **AES128:**  $n=10$ ,    **AES256:**  $n=14$

# AES: an iterated Even-Mansour cipher


$$\pi: \{0,1\}^n \rightarrow \{0,1\}^n \quad \text{invertible function}$$

# AES-NI: AES hardware instructions

AES instructions (Intel, AMD, ARM, ...)

- **aesenc, aesenclast:** do one round of AES
  - 128-bit registers:  $\text{xmm1} = \text{state}$ ,  $\text{xmm2} = \text{round key}$
  - aesenc  $\text{xmm1}, \text{xmm2}$  ;** puts result in  $\text{xmm1}$
- **aesdec, aesdeclast:** one round of  $\text{AES}^{-1}$
- **aeskeygenassist:** performs AES key expansion

**Claim 1:** 20 x speed-up over OpenSSL on same hardware

**Claim 2:** constant time execution

# AES-NI: Encrypting one block (AES256)

**step 0:** `aeskeygenassist`(256-bit key) →  
round keys in    `xmm2, xmm3, ..., xmm16`

---

**step 1:** load plaintext block into `xmm1` (128-bit block)

**step 2:**

`xor xmm1, xmm2`

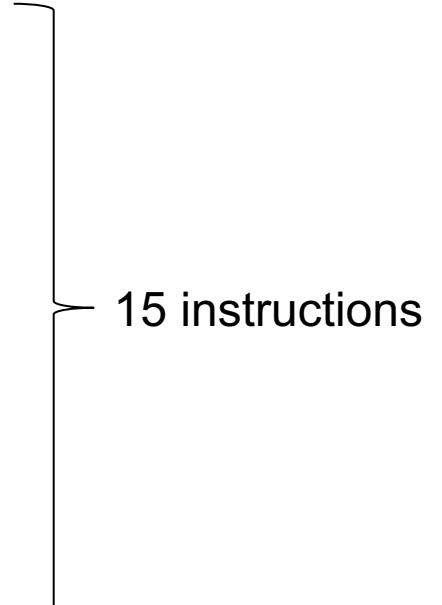
`aesenc xmm1, xmm3`

`aesenc xmm1, xmm4`

`aesenc xmm1, xmm5`

...

`aesenclast xmm1, xmm16`



15 instructions

# AES-NI: parallelism and pipelining

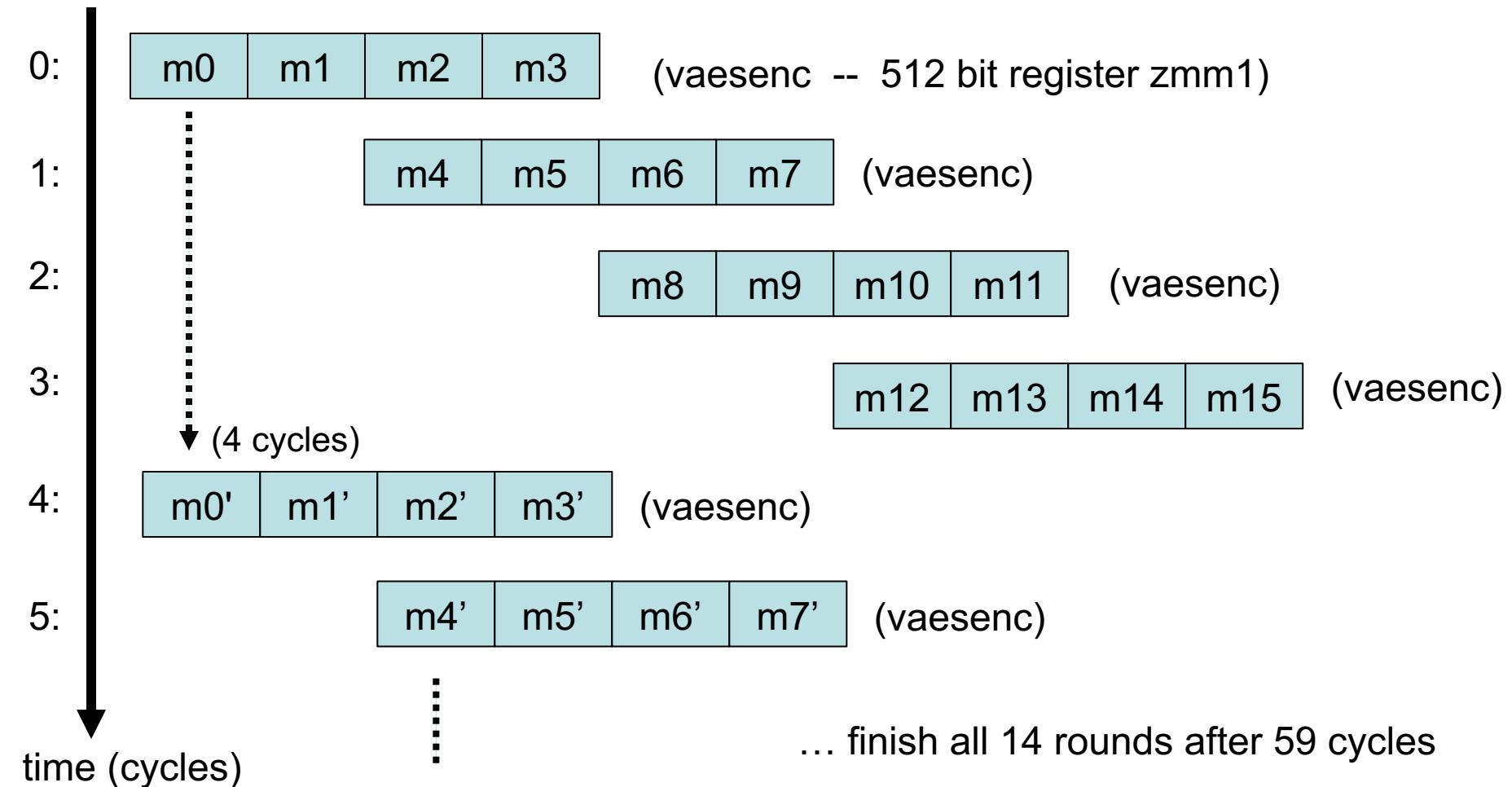
- Intel Skylake (old): 4 cycles for one aesenc
  - **fully pipelined**: can issue one instruction every cycle
- Intel Icelake: **vectorized aesenc** (vaesenc)
  - **vaesenc**: compute aesenc on four blocks in parallel
  - fully pipelined: can issue one instruction every cycle

## Implications:

- AES256 encrypt a **single** block takes **56 cycles** (14 rounds)
- AES256 encrypt **16 blocks** on Icelake takes **59 cycles**

# AES256 encrypt on Icelake

To encrypt 16 blocks do:  $m_0, \dots, m_{15} \in \{0,1\}^{128}$



# Abstract view of a block cipher: PRPs and PRFs

## Topics:

1. Abstract block ciphers: PRPs and PRFs
2. Security models for encryption
3. Analysis of CBC and counter mode

# PRPs and PRFs

- Pseudo Random Function **(PRF)** defined over  $(K, X, Y)$ :

$$F: K \times X \rightarrow Y$$

such that exists “efficient” algorithm to evaluate  $F(k, x)$

---

- Pseudo Random Permutation **(PRP)** defined over  $(K, X)$ :

$$E: K \times X \rightarrow X$$

such that:

1. Exists “efficient” algorithm to evaluate  $E(k, x)$
2. The function  $E(k, \cdot)$  is one-to-one
3. Exists “efficient” inversion algorithm  $D(k, x)$

# Running example

- Example PRPs: 3DES, AES, ...

AES256:  $K \times X \rightarrow X$  where  $X = \{0,1\}^{128}$ ,  $K = \{0,1\}^{2^{56}}$

3DES:  $K \times X \rightarrow X$  where  $X = \{0,1\}^{64}$ ,  $K = \{0,1\}^{168}$

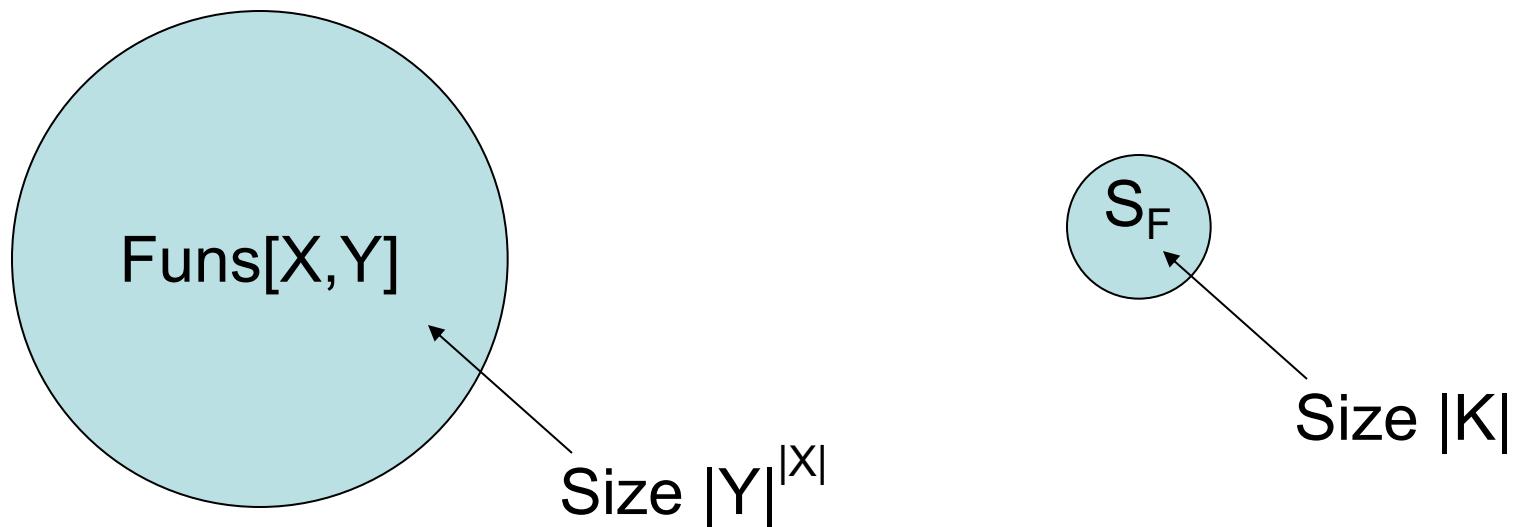
- Functionally, any PRP is also a PRF.
  - A PRP is a PRF where  $X=Y$  and is efficiently invertible
  - A PRP is sometimes called a ***block cipher***

# Secure PRFs

- Let  $F: K \times X \rightarrow Y$  be a PRF

$$\begin{cases} \text{Fun}_{\mathcal{S}}[X, Y]: \text{ the set of \underline{all} functions from } X \text{ to } Y \\ S_F = \{ F(k, \cdot) \text{ s.t. } k \in K \} \subseteq \text{Fun}_{\mathcal{S}}[X, Y] \end{cases}$$

- Intuition: a PRF is **secure** if a random function in  $\text{Fun}_{\mathcal{S}}[X, Y]$  is indistinguishable from a random function in  $S_F$

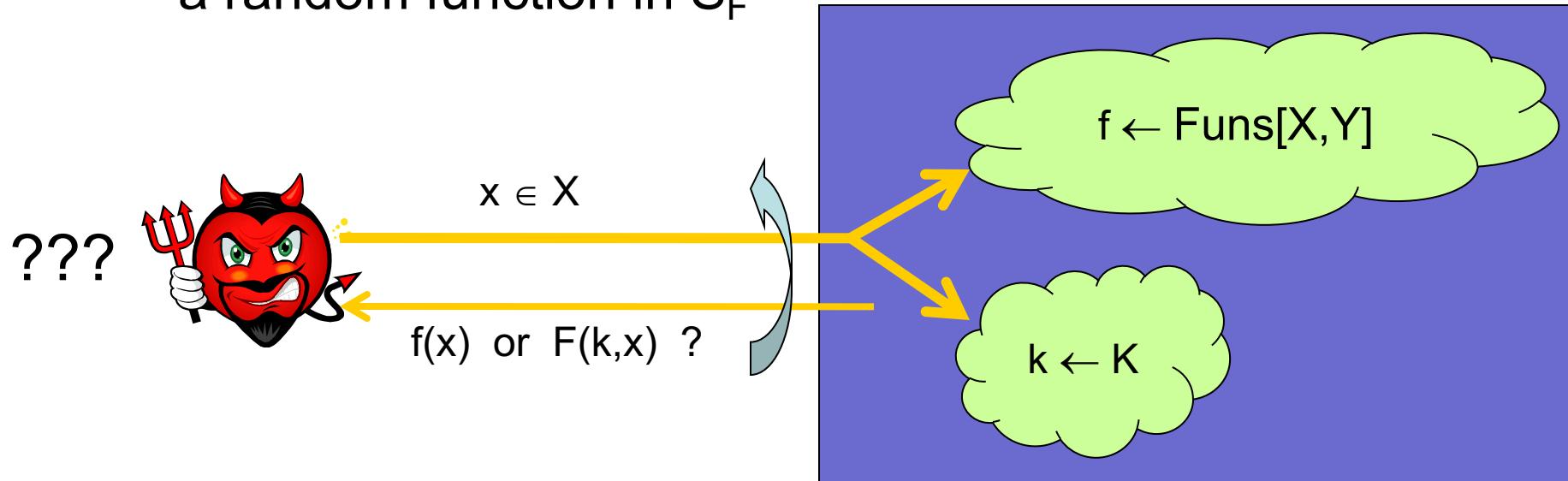


# Secure PRFs

- Let  $F: K \times X \rightarrow Y$  be a PRF

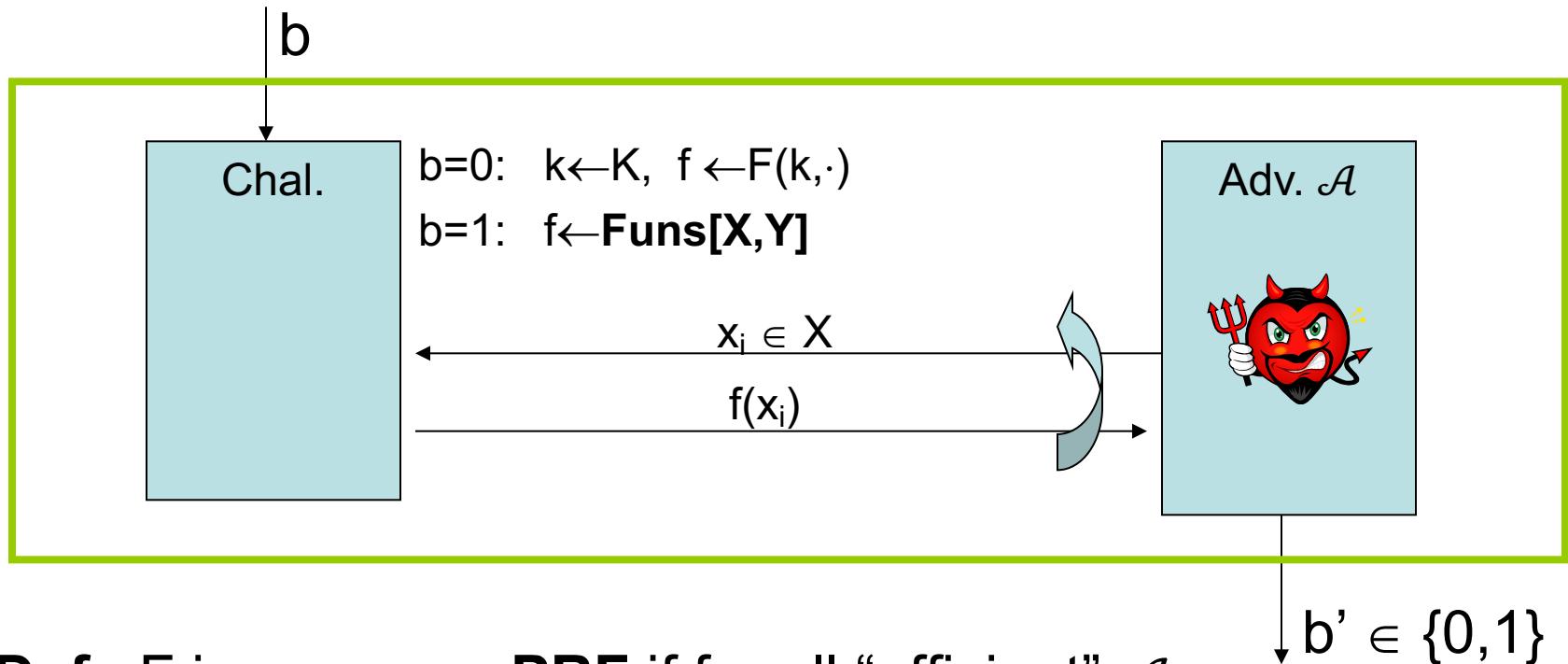
$$\left\{ \begin{array}{l} \text{Funs}[X,Y]: \text{ the set of \underline{all} functions from } X \text{ to } Y \\ S_F = \{ F(k,\cdot) \text{ s.t. } k \in K \} \subseteq \text{Funs}[X,Y] \end{array} \right.$$

- Intuition: a PRF is **secure** if a random function in  $\text{Funs}[X,Y]$  is indistinguishable from a random function in  $S_F$



# Secure PRF: definition

- For  $b=0,1$  define experiment  $\text{EXP}(b)$  as:



- Def:**  $F$  is a **secure PRF** if for all “efficient”  $\mathcal{A}$ :

$$\text{Adv}_{\text{PRF}}[\mathcal{A}, F] = |\Pr[\text{EXP}(0) = 1] - \Pr[\text{EXP}(1) = 1]|$$

is “negligible.”

# An example

Let  $K = X = \{0,1\}^n$ .

Consider the PRF:  $F(k, x) = k \oplus x$  defined over  $(K, X, X)$

Let's show that  $F$  is insecure:

Adversary  $\mathcal{A}$  :

- (1) choose arbitrary  $x_0 \neq x_1 \in X$
- (2) query for  $y_0 = f(x_0)$  and  $y_1 = f(x_1)$
- (3) output '0' if  $y_0 \oplus y_1 = x_0 \oplus x_1$ , else '1'

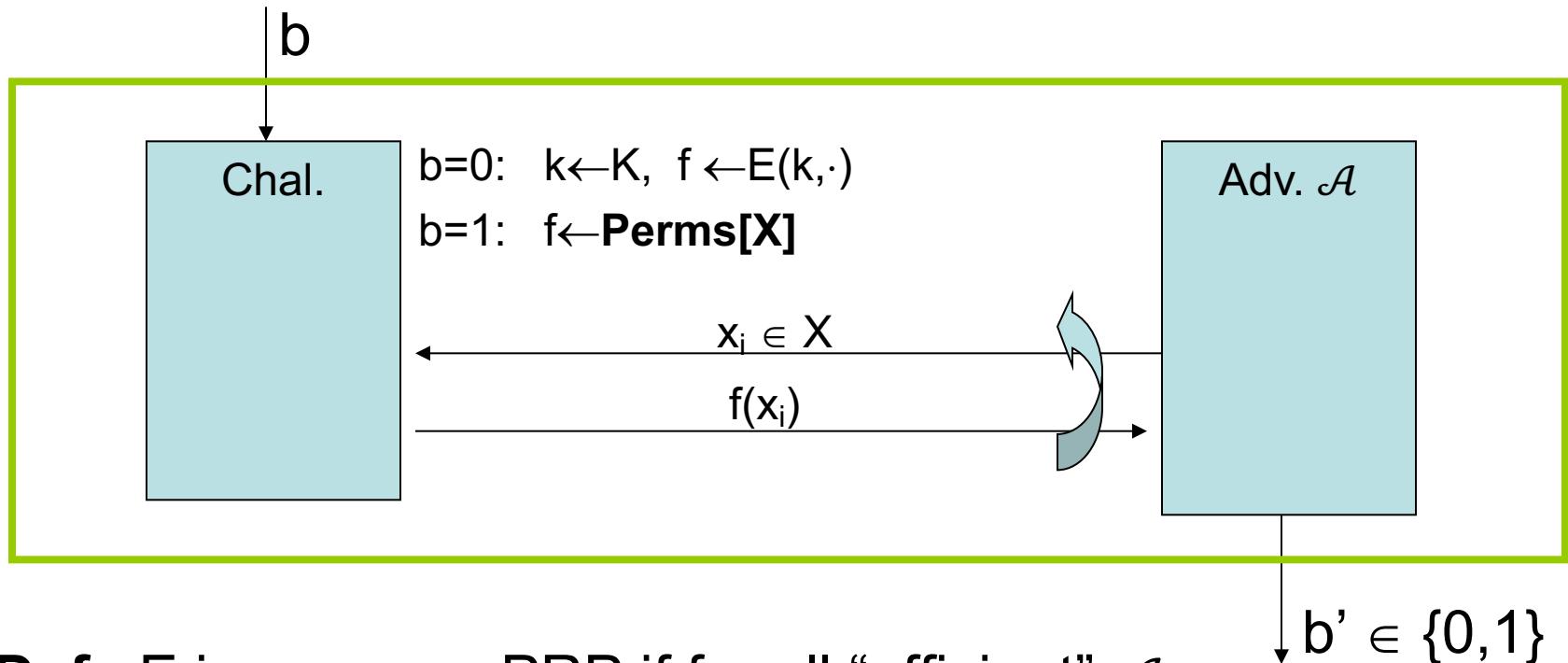
$$\Pr[\text{EXP}(0) = 0] = 1$$

$$\Pr[\text{EXP}(1) = 0] = 1/2^n$$

$$\Rightarrow \text{Adv}_{\text{PRF}}[\mathcal{A}, F] = 1 - (1/2^n) \quad (\text{not negligible})$$

# Secure PRP

- For  $b=0,1$  define experiment  $\text{EXP}(b)$  as:



- Def:**  $E$  is a secure PRP if for all “efficient”  $\mathcal{A}$  :

$$\text{Adv}_{\text{PRP}}[\mathcal{A}, E] = |\Pr[\text{EXP}(0) = 1] - \Pr[\text{EXP}(1) = 1]|$$

is “negligible.”

# Example secure PRPs

- Example secure PRPs: 3DES, AES, ...

AES256:  $K \times X \rightarrow X$  where  $X = \{0,1\}^{128}$   
 $K = \{0,1\}^{256}$

- AES256 PRP Assumption (example) :

For all  $\mathcal{A}$  s.t.  $\text{time}(\mathcal{A}) < 2^{80}$ :  $\text{Adv}_{\text{PRP}}[\mathcal{A}, \text{AES256}] < 2^{-40}$

# The PRP-PRF Switching Lemma

Any secure PRP is also a secure PRF.

Lemma: Let  $E$  be a PRP over  $(K, X)$ .

Then for any  $q$ -query adversary  $\mathcal{A}$  :

$$| \text{Adv}_{\text{PRF}}[\mathcal{A}, E] - \text{Adv}_{\text{PRP}}[\mathcal{A}, E] | < q^2 / 2|X|$$

(proof follows from bounds on the birthday paradox)

$\Rightarrow$  Suppose  $|X|$  is large so that  $q^2 / 2|X|$  is “negligible”

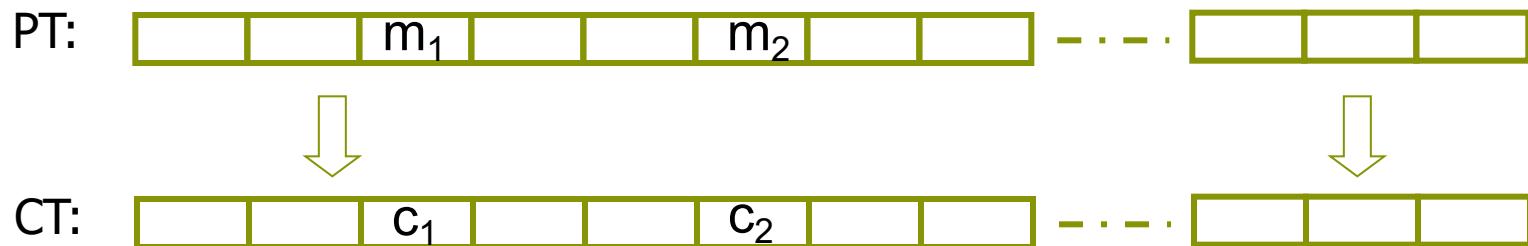
Then  $\text{Adv}_{\text{PRP}}[\mathcal{A}, E]$  “negligible”  $\Rightarrow$   $\text{Adv}_{\text{PRF}}[\mathcal{A}, E]$  “negligible”

# Using PRPs and PRFs

Goal: build “secure” encryption from a PRP

# Incorrect use of a PRP

Electronic Code Book (ECB):



Problem:

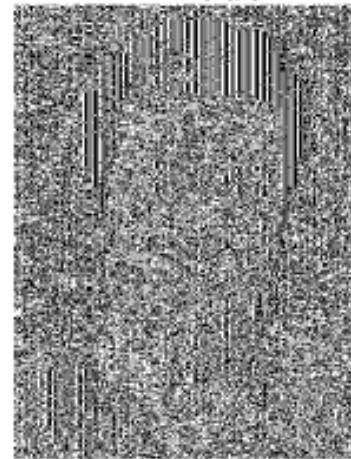
- if  $m_1 = m_2$  then  $c_1 = c_2$

# In pictures

An example plaintext



Encrypted with AES in ECB mode



(courtesy B. Preneel)

# How to use a block cipher?

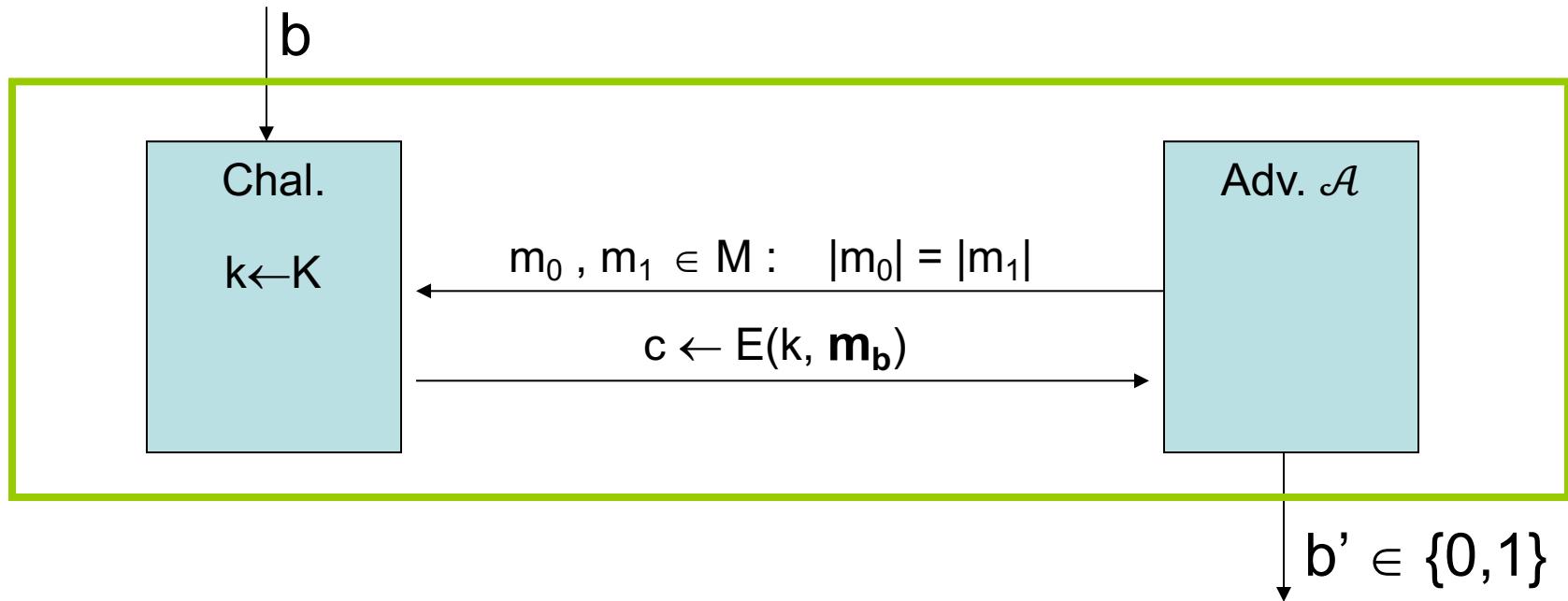
## Modes of Operation for One-time Use Key

### Example application:

Encrypted email. New key for every message.

# Semantic Security for one-time key

- $\mathbb{E} = (E, D)$  a cipher defined over  $(K, M, C)$
- For  $b=0,1$  define  $\text{EXP}(b)$  as:



- Def:  $\mathbb{E}$  is sem. sec. for one-time key if for all “efficient”  $\mathcal{A}$  :

$$\text{Adv}_{\text{SS}}[\mathcal{A}, \mathbb{E}] = |\Pr[\text{EXP}(0)=1] - \Pr[\text{EXP}(1)=1]|$$

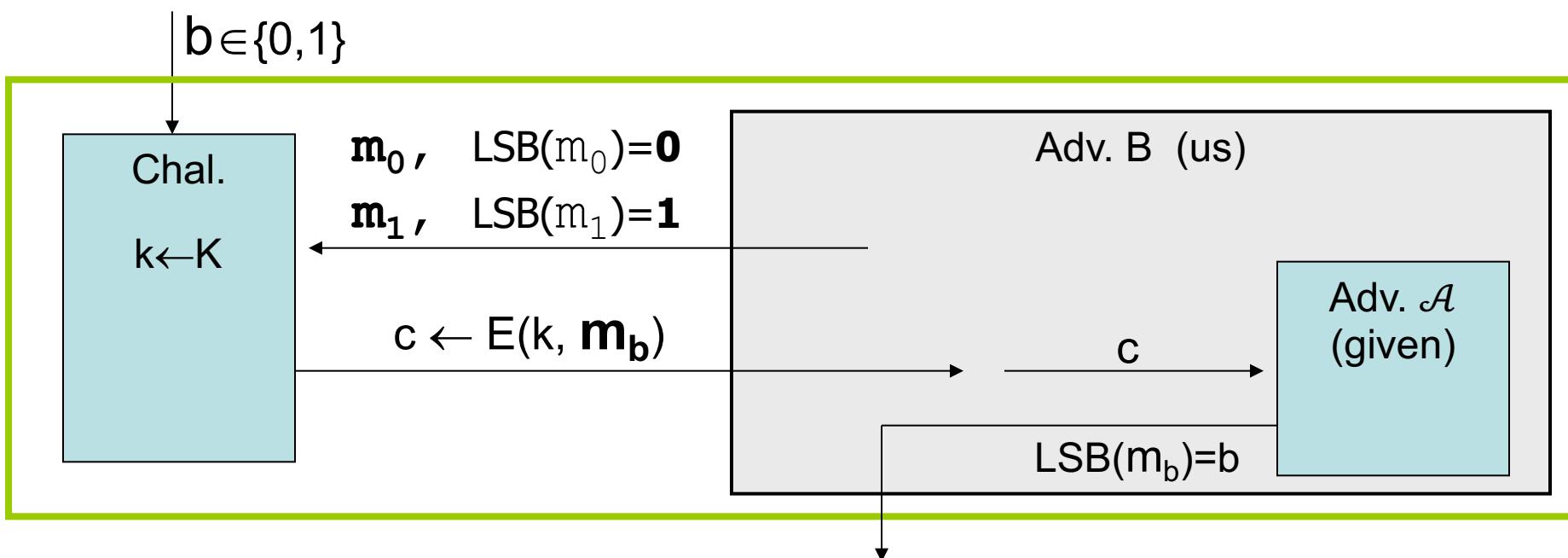
is “negligible.”

# Semantic security (cont.)

Sem. Sec.  $\Rightarrow$  no “efficient” adversary learns “info” about PT from a single CT.

Example: suppose efficient  $\mathcal{A}$  can deduce LSB of PT from CT.

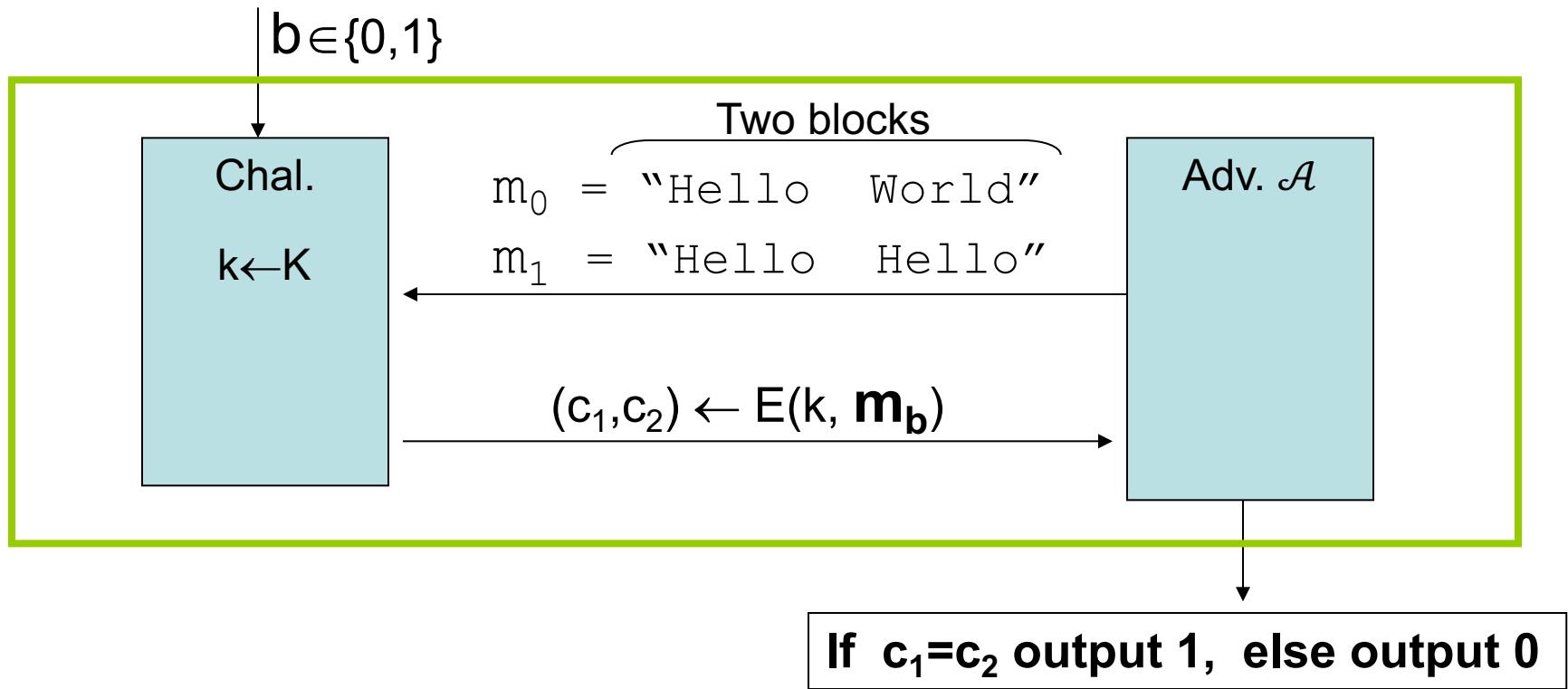
Then  $\mathbb{E} = (E, D)$  is not semantically secure.



Then  $\text{Adv}_{\text{SS}}[B, \mathbb{E}] = 1 \Rightarrow \mathbb{E}$  is not sem. sec.

# Note: ECB is not Sem. Sec.

ECB is not semantically secure for messages that contain two or more blocks.

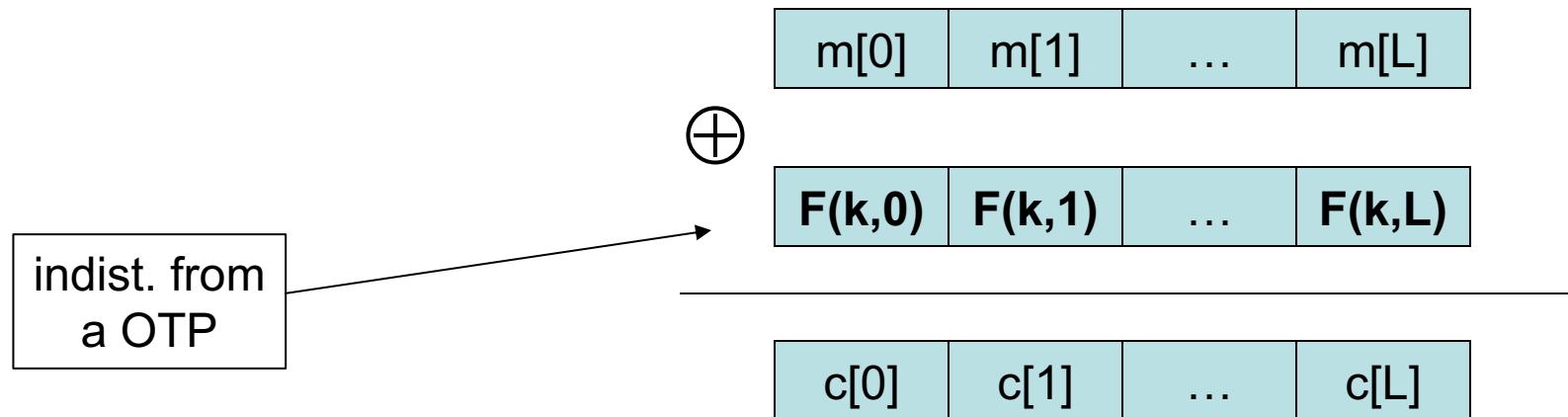


Then  $\text{Adv}_{\text{SS}}[\mathcal{A}, \text{ECB}] = 1$

# Secure Constructions

Examples of sem. sec. systems:

1.  $\text{Adv}_{\text{SS}}[\mathcal{A}, \text{OTP}] = 0$  for all  $\mathcal{A}$
2. Deterministic counter mode from a PRF  $F$  :
  - $E_{\text{DETCTR}}(k, m) =$



⇒ Stream cipher built from PRF (e.g. AES)

# Det. counter-mode security

Theorem: For any  $L > 0$ .

If  $F$  is a secure PRF over  $(K, X, X)$  then

$E_{DETCTR}$  is sem. sec. cipher over  $(K, X^L, X^L)$ .

In particular, for any adversary  $\mathcal{A}$  attacking  $E_{DETCTR}$  there exists a PRF adversary  $B$  s.t.:

$$\text{Adv}_{\text{SS}}[\mathcal{A}, E_{\text{DETCTR}}] = 2 \cdot \text{Adv}_{\text{PRF}}[B, F]$$

---

$\text{Adv}_{\text{PRF}}[B, F]$  is negligible (since  $F$  is a secure PRF)

$\Rightarrow \text{Adv}_{\text{SS}}[\mathcal{A}, E_{\text{DETCTR}}]$  must be negligible.

# Modes of Operation for Many-time Key

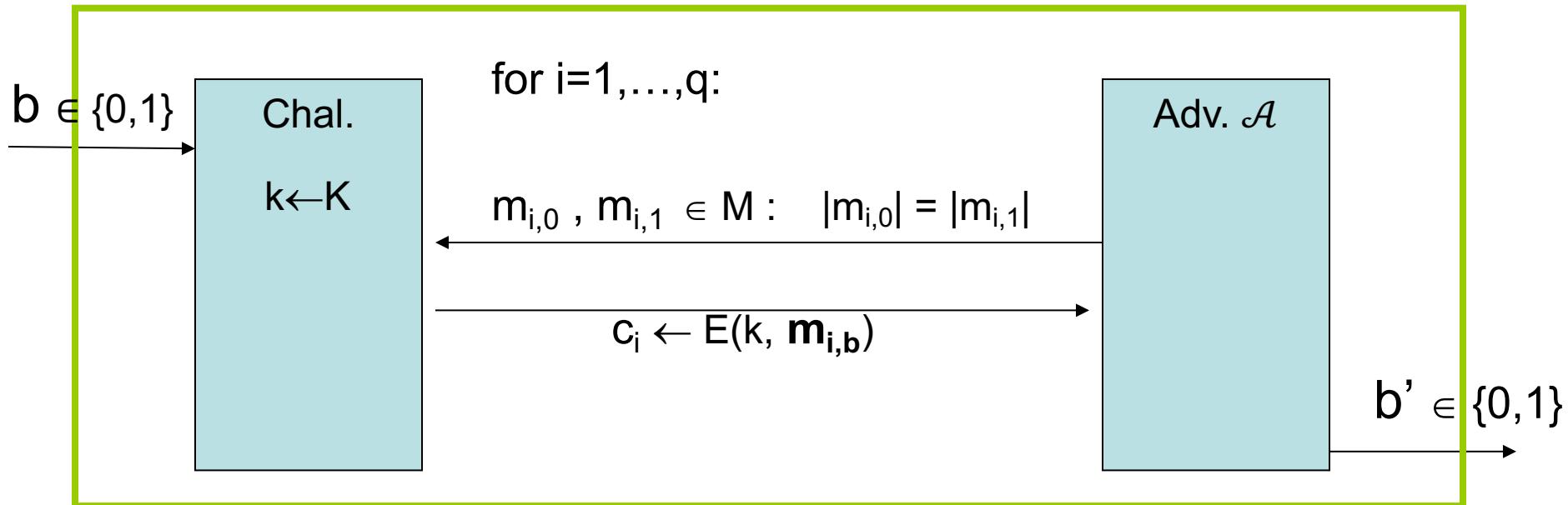
## Example applications:

1. File systems: Same AES key used to encrypt many files.
2. IPsec: Same AES key used to encrypt many packets.

# Semantic Security for many-time key (CPA security)

Cipher  $\mathbb{E} = (E, D)$  defined over  $(K, M, C)$ .

For  $b=0,1$  define  $\text{EXP}(b)$  as:



Def:  $\mathbb{E}$  is sem. sec. under CPA if for all “efficient”  $\mathcal{A}$  :

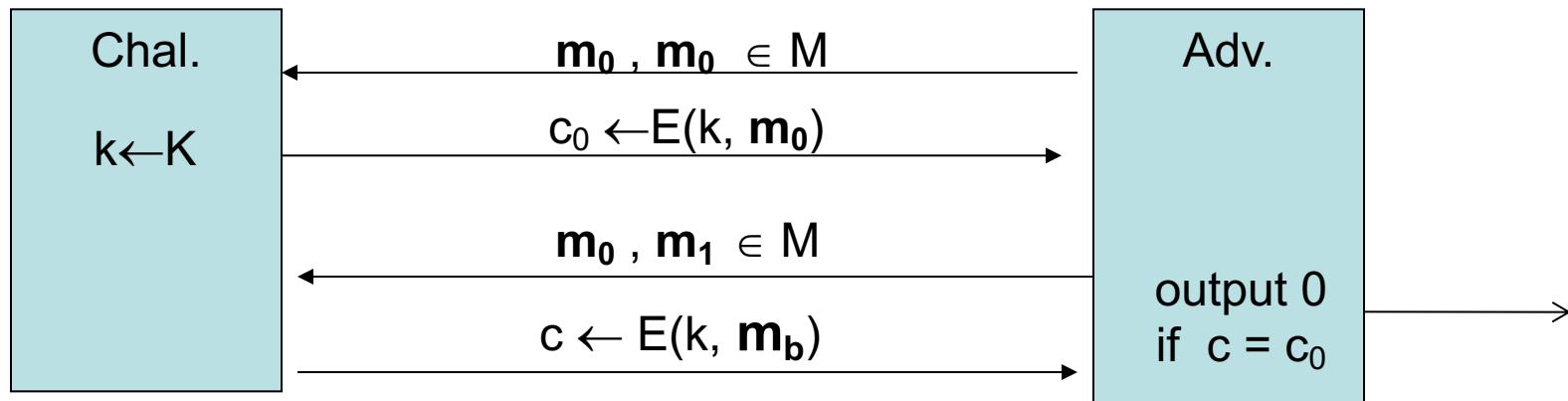
$$\text{Adv}_{\text{CPA}}[\mathcal{A}, \mathbb{E}] = \left| \Pr[\text{EXP}(0)=1] - \Pr[\text{EXP}(1)=1] \right|$$

is “negligible.”

# Security for many-time key

Fact: stream ciphers are insecure under CPA.

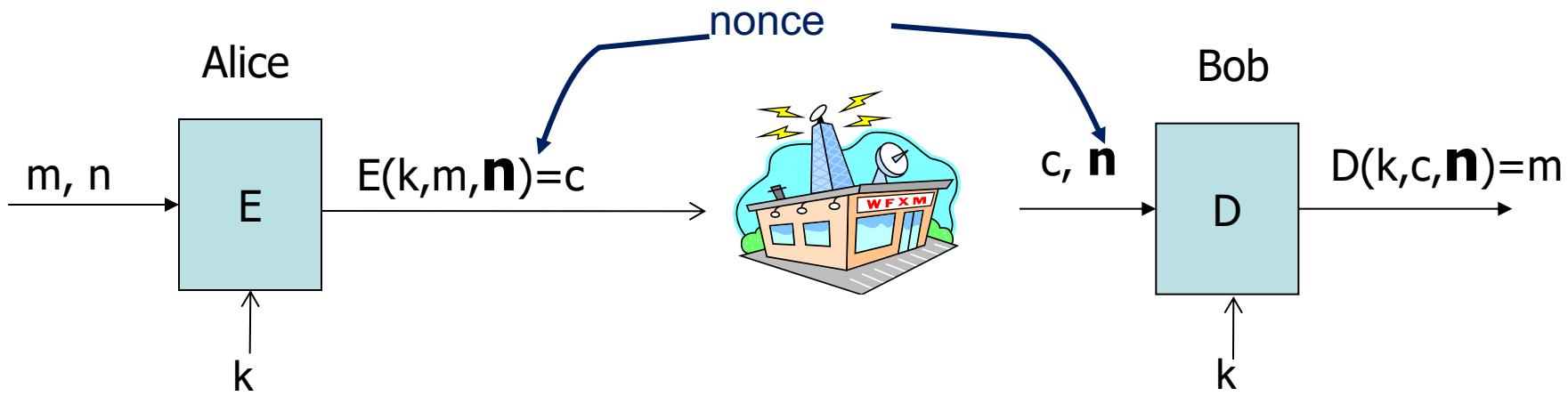
- More generally: if  $E(k, m)$  always produces same ciphertext, then cipher is insecure under CPA.



If secret key is to be used multiple times  $\Rightarrow$

given the same plaintext message twice,  
the encryption alg. must produce different outputs.

# Nonce-based Encryption

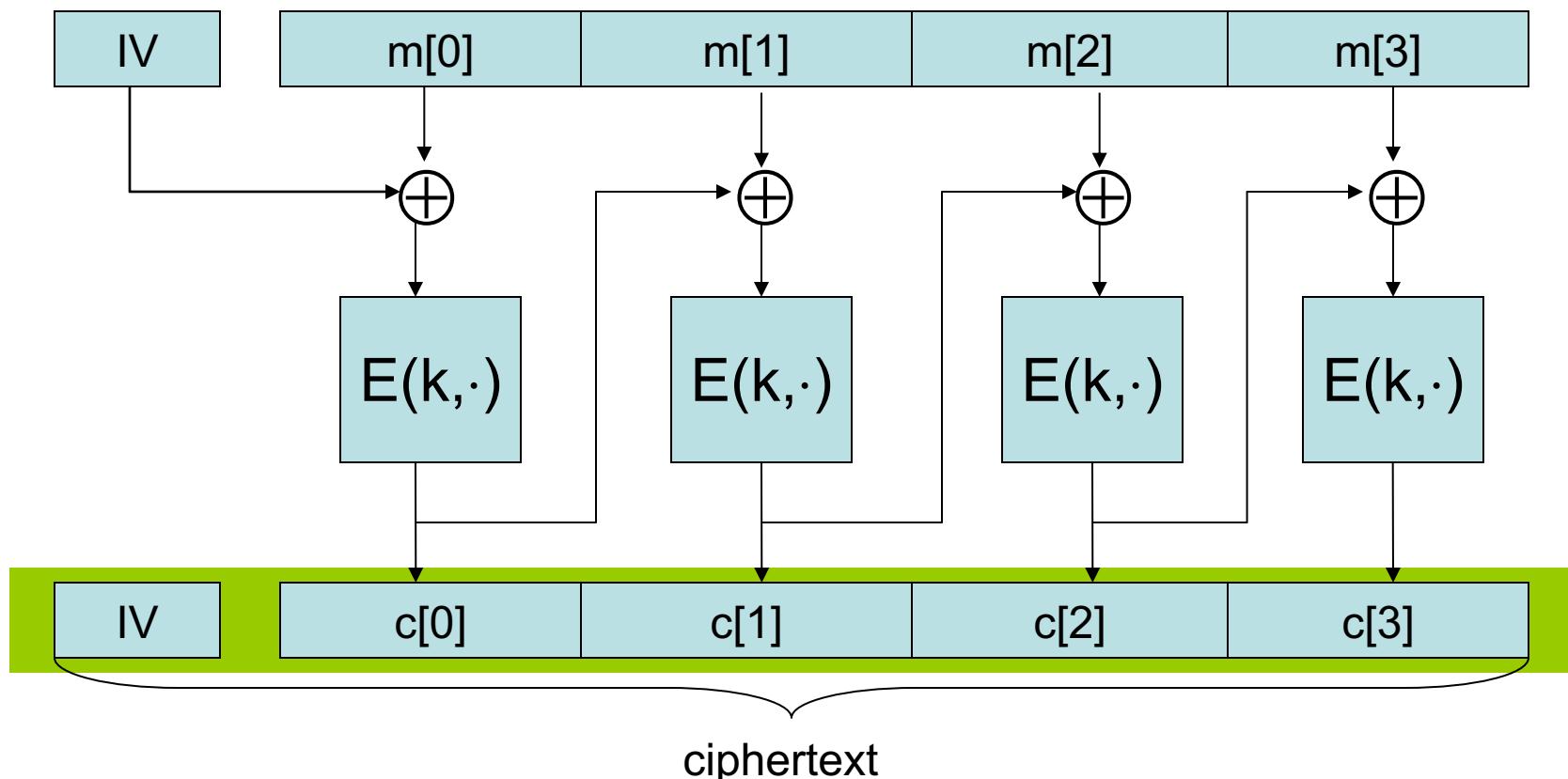


**nonce  $n$ :** a value that changes from msg to msg  
 $(k, n)$  pair never used more than once

- method 1: encryptor chooses a random nonce,  $n \leftarrow \mathcal{N}$
- method 2: nonce is a counter (e.g. packet counter)
  - used when encryptor keeps state from msg to msg
  - if decryptor has same state, need not send nonce with CT

# Construction 1: CBC with random nonce

Cipher block chaining with a random IV (IV = nonce)



note: CBC where attacker can predict the IV is not CPA-secure. HW.

# CBC: CPA Analysis

CBC Theorem: For any  $L > 0$ ,

If  $E$  is a secure PRP over  $(K, X)$  then

$E_{\text{CBC}}$  is a sem. sec. under CPA over  $(K, X^L, X^{L+1})$ .

In particular, for a  $q$ -query adversary  $A$  attacking  $E_{\text{CBC}}$  there exists a PRP adversary  $B$  s.t.:

$$\text{Adv}_{\text{CPA}}[A, E_{\text{CBC}}] \leq 2 \cdot \text{Adv}_{\text{PRP}}[B, E] + 2 q^2 L^2 / |X|$$

Note: CBC is only secure as long as  $q^2 \cdot L^2 \ll |X|$

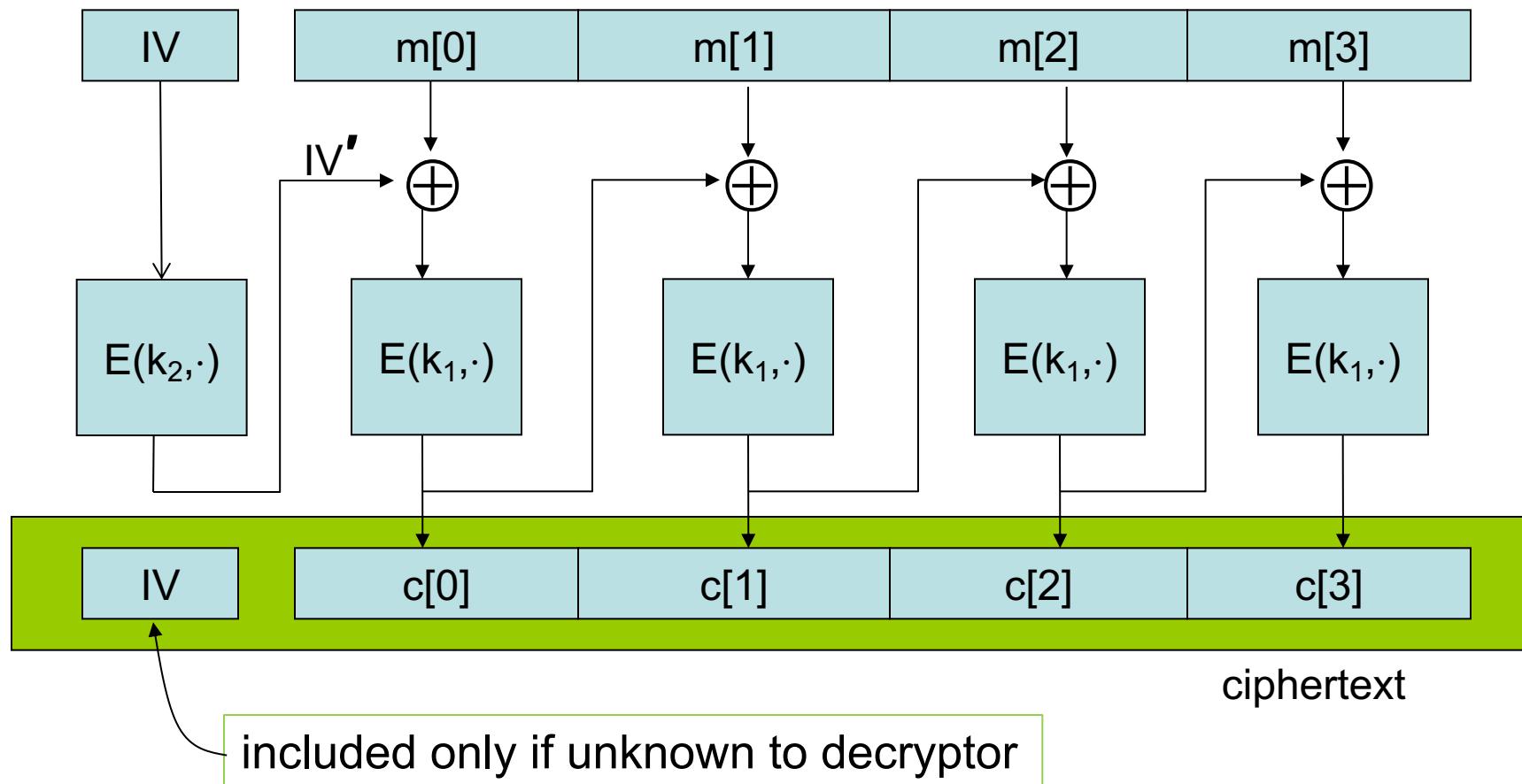
# messages enc. with key

max msg length

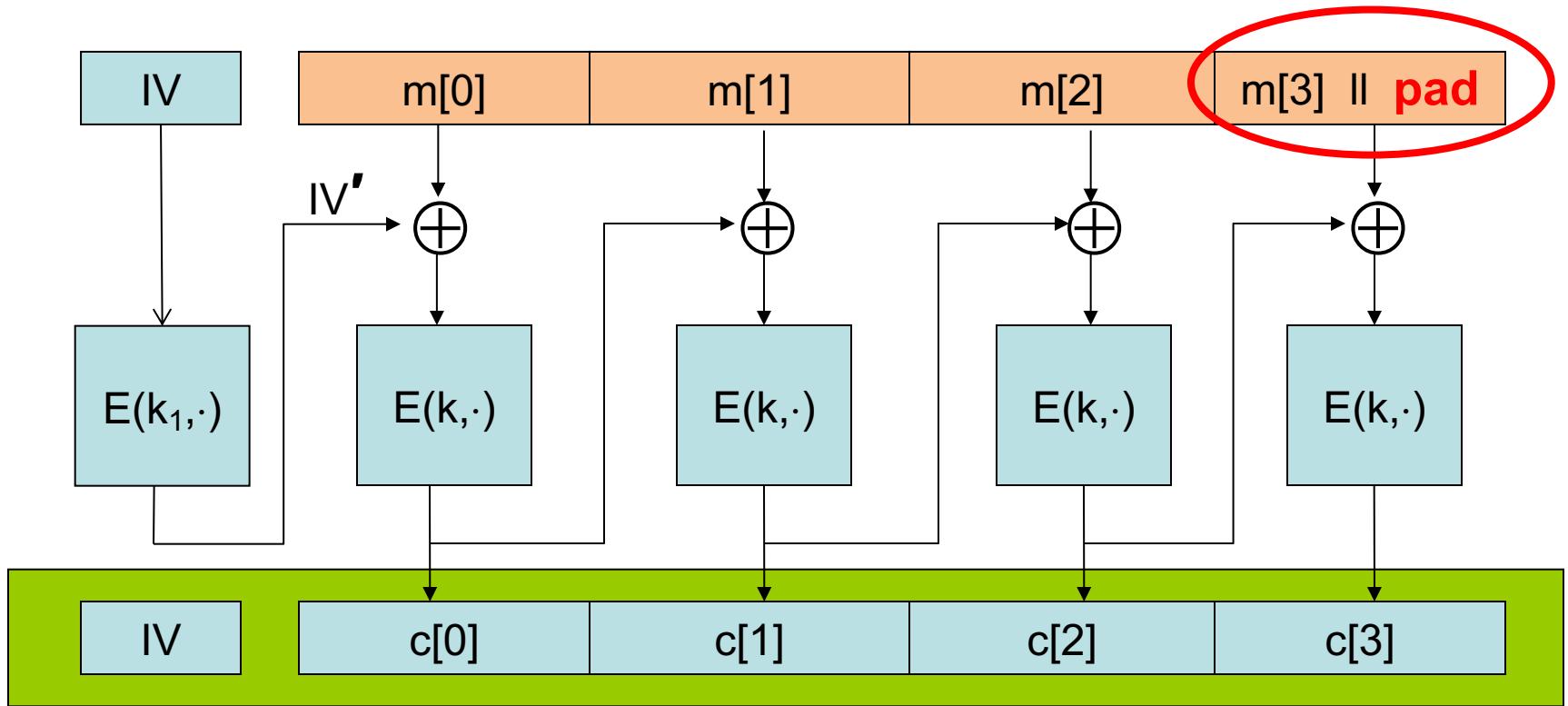
# Construction 1': CBC with **unique** nonce

Cipher block chaining with unique IV      (IV = nonce)

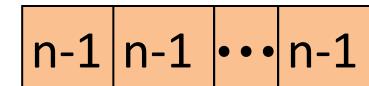
unique IV means: (key,IV) pair is used for only one message



# A CBC technicality: padding



TLS 1.0: if need  $n$ -byte pad,  $n > 0$ , use:



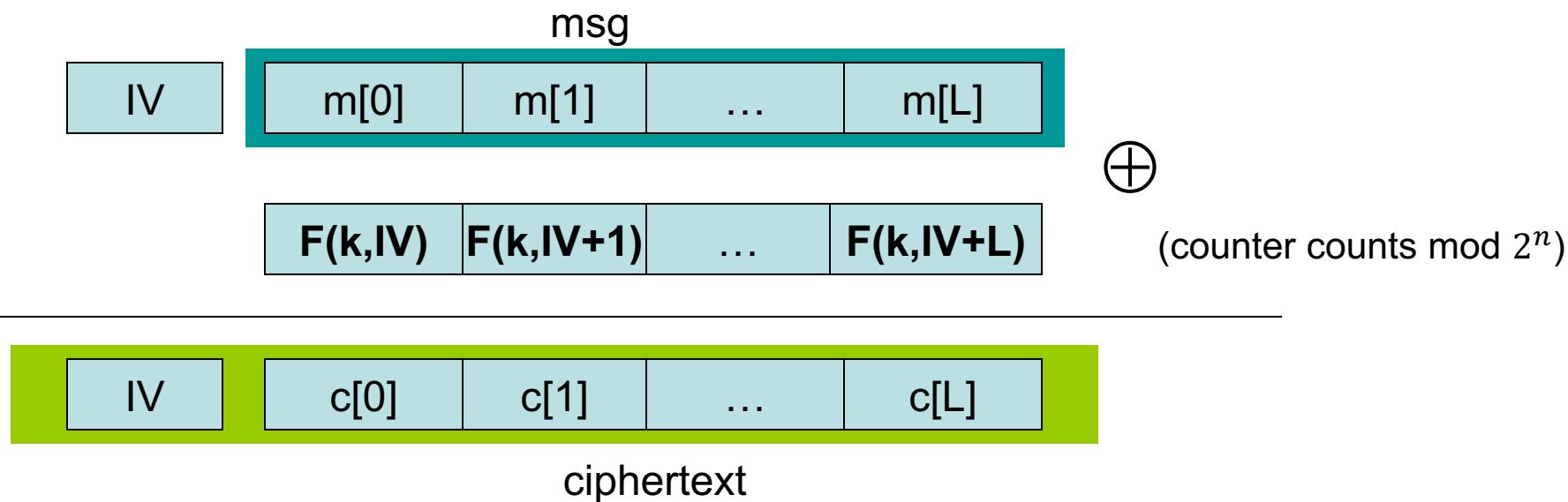
if no pad needed, add a dummy block

pad is removed during decryption

# Construction 2: rand ctr-mode

$F$ : PRF defined over  $(K, X, Y)$  where  $X = \{0, 1, \dots, 2^n - 1\}$  and  $Y = \{0, 1\}^n$

(e.g.,  $n=128$ )

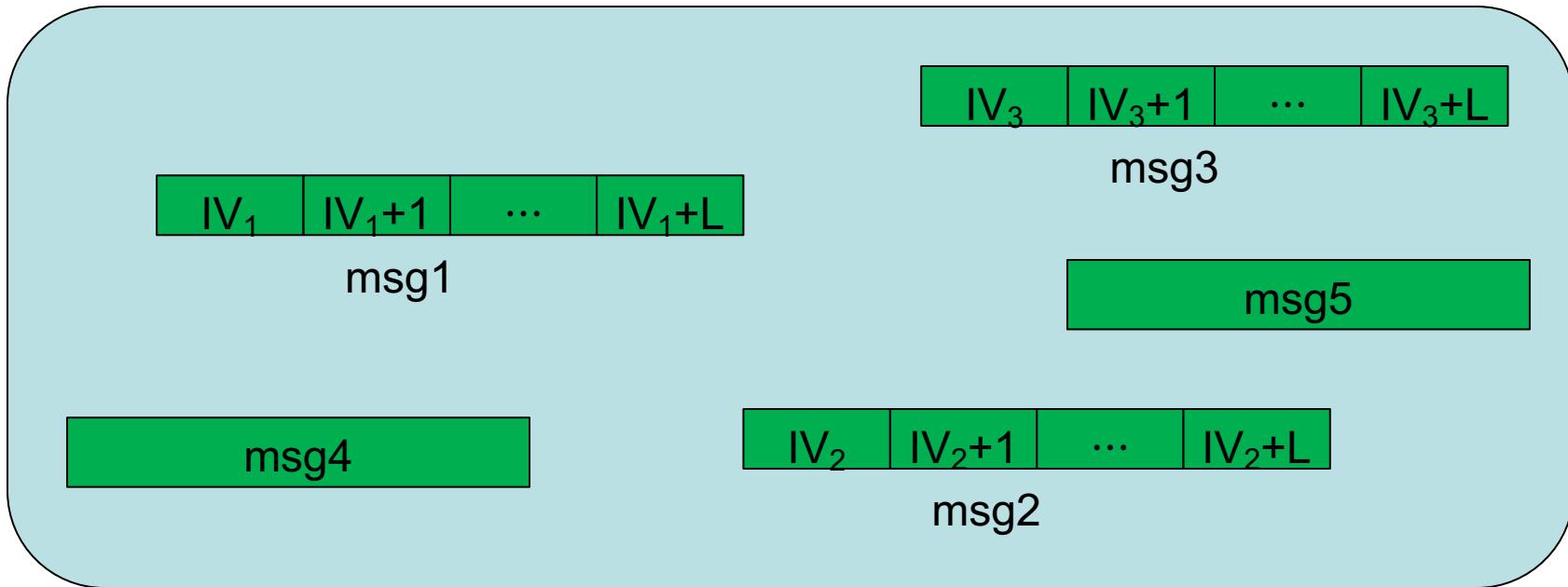


IV - chosen at random for every message

note: parallelizable (unlike CBC)

# Why is this CPA secure?

the set  $X$ : domain of PRF



CPA security holds as long as intervals do not intersect

- $q$  msgs,  $L$  blocks each  $\Rightarrow \Pr[\text{intersection}] \leq 2 q^2 L / |X|$   
$$2 q^2 L / |X|$$

needs to be negligible

# rand ctr-mode: CPA analysis

Randomized counter mode: random IV.

Counter-mode Theorem: For any  $L > 0$ ,

If  $F$  is a secure PRF over  $(K, X, X)$  then

$E_{CTR}$  is a sem. sec. under CPA over  $(K, X^L, X^{L+1})$ .

In particular, for a  $q$ -query adversary  $A$  attacking  $E_{CTR}$  there exists a PRF adversary  $B$  s.t.:

$$\text{Adv}_{CPA}[A, E_{CTR}] \leq 2 \cdot \text{Adv}_{PRF}[B, F] + 2 q^2 L / |X|$$

Note: ctr-mode only secure as long as  $q^2 \cdot L \ll |X|$

Better then CBC !

# An example

$$\mathbf{Adv}_{\text{CPA}}[\mathbf{A}, \mathbf{E}_{\text{CTR}}] \leq 2 \cdot \mathbf{Adv}_{\text{PRF}}[\mathbf{B}, \mathbf{E}] + \mathbf{2 q^2 L / |X|}$$

$q = \# \text{ messages encrypted with } k$  ,  $L = \text{length of max msg}$

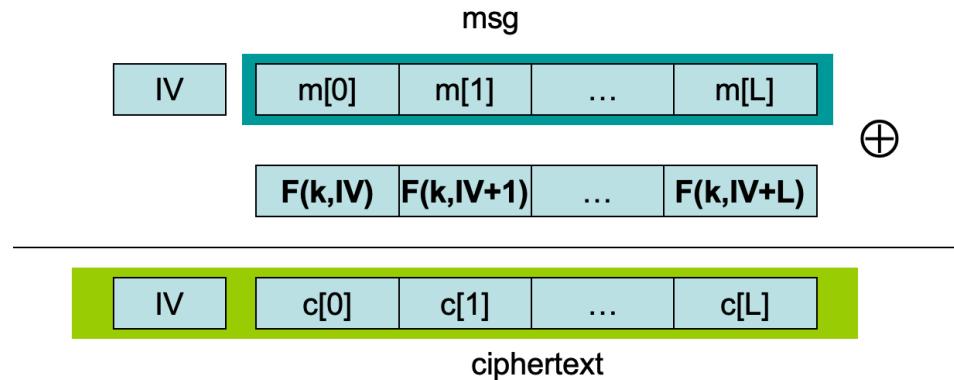
Suppose we want  $\mathbf{Adv}_{\text{CPA}}[\mathbf{A}, \mathbf{E}_{\text{CTR}}] \leq 1/2^{31}$

- Then need:  $\mathbf{q^2 L / |X|} \leq 1/2^{32}$

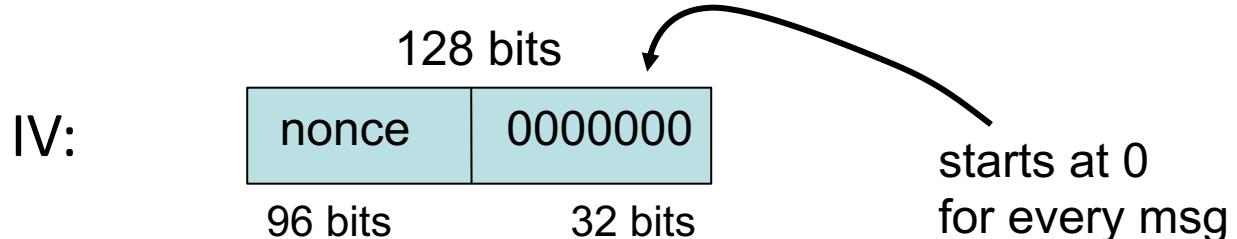
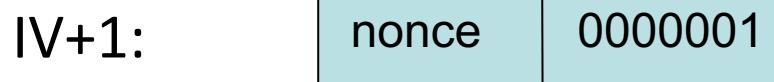
- AES:  $|X| = 2^{128} \Rightarrow \mathbf{q L^{1/2} < 2^{48}}$

So, after  $\mathbf{2^{32} CTs}$  each of  $\mathbf{len 2^{32}}$ , must change key  
(total of  $2^{64}$  AES blocks)

# Construction 2': nonce ctr-mode



To ensure  $F(k, x)$  is never used more than once, choose IV as:



# Comparison: ctr vs. CBC

|                              | CBC               | ctr mode        |
|------------------------------|-------------------|-----------------|
| required primitive           | PRP               | PRF             |
| parallel processing          | No                | Yes             |
| security                     | $q^2 L^2 \ll  X $ | $q^2 L \ll  X $ |
| dummy padding block          | Yes*              | No              |
| 1 byte msgs<br>(nonce-based) | 16x expansion     | no expansion    |

\* for CBC, dummy padding block can be avoided using *ciphertext stealing*

# Summary

PRPs and PRFs: a useful abstraction of block ciphers.

We examined two security notions:

1. Semantic security against one-time.
2. Semantic security against many-time CPA.

Note: neither mode ensures data integrity.

Stated security results summarized in the following table:

| Power<br>Goal | one-time key                   | Many-time key<br>(CPA)    | CPA and<br>CT integrity |
|---------------|--------------------------------|---------------------------|-------------------------|
| Sem. Sec.     | steam-ciphers<br>det. ctr-mode | rand CBC<br>rand ctr-mode | later                   |

# Attacks on block ciphers

**Goal:** distinguish block cipher from a random permutation

- if this can be done efficiently then block cipher is broken

Harder goal:

find key  $k$  given many  $c_i = E(k, m_i)$  for random  $m_i$

# (1) Linear and differential attacks

[BS'89, M'93]

Given *many*  $(m_i, c_i)$  pairs, can recover key much faster than exhaustive search

Linear cryptanalysis (overview) : let  $c = \text{DES}(k, m)$

Suppose for random  $k, m$  :

$$\Pr \left[ m[i_1] \oplus \cdots \oplus m[i_r] \oplus c[j_1] \oplus \cdots \oplus c[j_v] = k[l_1] \oplus \cdots \oplus k[l_u] \right] = \frac{1}{2} + \varepsilon$$

For some  $\varepsilon$ .

For DES, this exists with  $\varepsilon = 1/2^{21} \approx 0.0000000477$  !!

# Linear attacks

$$\Pr \left[ m[i_1] \oplus \cdots \oplus m[i_r] \oplus c[j_1] \oplus \cdots \oplus c[j_v] = k[l_1] \oplus \cdots \oplus k[l_u] \right] = \frac{1}{2} + \varepsilon$$

Thm: given  $1/\varepsilon^2$  random pairs  $(m, c = \text{DES}(k, m))$  then

$$k[l_1] \oplus \cdots \oplus k[l_u] = \text{MAJ} \left[ m[i_1] \oplus \cdots \oplus m[i_r] \oplus c[j_1] \oplus \cdots \oplus c[j_v] \right]$$

with prob.  $\geq 97.7\%$

$\Rightarrow$  with  $1/\varepsilon^2$  inp/out pairs can find  $k[l_1] \oplus \cdots \oplus k[l_u]$  in time  $\approx 1/\varepsilon^2$

# Linear attacks

For DES,  $\varepsilon = 1/2^{21} \Rightarrow$

with  $2^{42}$  inp/out pairs can find  $k[l_1] \oplus \dots \oplus k[l_u]$  in time  $2^{42}$

Roughly speaking: can find 14 key “bits” this way in time  $2^{42}$

Brute force remaining  $56-14=42$  bits in time  $2^{42}$

Attack time:  $\approx 2^{43}$  ( $<< 2^{56}$ ) with  $2^{42}$  random inp/out pairs

# Lesson

A tiny bit of linearity leads to a  $2^{42}$  time attack.

⇒ don't design ciphers yourself !!

## (2) Side channel attacks on software AES

Attacker measures the time to compute AES128( $k, m$ ) for many random blocks  $m$ .

- Suppose that the 256-byte  $S$  table is not in L1 cache at the start of each invocation
  - ⇒ time to encrypt reveals the order in which  $S$  entries are accessed
  - ⇒ leaks info. that can compromise entire key

Lesson: don't implement AES yourself !

Mitigation: AES-NI or use vetted software (e.g., BoringSSL)

# (3) Quantum attacks

Generic search problem:

Let  $f: X \rightarrow \{0,1\}$  be a function.

Goal: find  $x \in X$  s.t.  $f(x)=1$ .

Classical computer: best generic algorithm time =  $O(|X|)$

Quantum computer [Grover '96] : time =  $O(|X|^{1/2})$

(requires a long running quantum computation)

# Quantum exhaustive search

Given  $m, c = E(k, m)$  define

$$f(k) = \begin{cases} 1 & \text{if } E(k, m) = c \\ 0 & \text{otherwise} \end{cases}$$

Grover  $\Rightarrow$  quantum computer can find  $k$  in time  $O(|K|^{1/2})$

AES128: quantum key recovery time  $\approx 2^{64}$

Adversary has access to a quantum computer  $\Rightarrow$

encrypt data using a cipher with 256-bit keys (AES256)

THE END

# Recap

**Secure PRF**:  $F: K \times X \rightarrow Y$  and

$\{f(x) = F(k, x) \text{ for } k \leftarrow K\}$  is indist. from random  $f$  in  $\text{Funs}[X, Y]$

**Secure PRP**:  $E: K \times X \rightarrow X$ , efficiently invertible, and

$\{\pi(x) = E(k, x) \text{ for } k \leftarrow K\}$  is indist. from random  $\pi$  in  $\text{Perms}[X]$

How to use a secure PRF and a secure PRP for encryption?

- One-time key (semantic security): det. CTR-mode
- Many-time key (CPA security):  
nonce-based CBC, nonce-based CTR mode