CS255: Winter 2026

PRPs and PRFs

Dan Boneh, Stanford University

Recap

Simple stream ciphers:
can only use key to encrypt one message

Next goal: ciphers where a single key can be
used to encrypt many messages

First, block ciphers ...

Quick Recap

A block cipher is a pair of efficient algs. (E, D):

n bits n bits

PT Block CT Block

Key k bits

Canonical examples:
1. AES: n=128 bits, k = 128, 192, 256 bits
2. 3DES: n= 64 bits, k = 168 bits (historical)

Block Ciphers Built by Ilteration

key k

key expansion

K, Ko Ka Kn

| | | |
m—>t—>:—>:— ---------- —>f;—>C

= =3 = =3

4 4 4 4

R(k,m) is called a round function

3DES: n=48, AES128:n=10, AES256: n=14

AES: an iterated Even-Mansour cipher

single round EM

]
am
o

invertible

output

key expansion:

m: {0,1}* — {0,1}" invertible function

AES-NI: AES hardware instructions

AES instructions (Intel, AMD, ARM, ...)

« aesenc, aesenclast: do one round of AES
128-bit registers: xmm1=state, xmm2=round key
aesenc xmm1, xmm2 ; puts resultin xmm1
 aesdec, aesdeclast: one round of AES-

- aeskeygenassist: performs AES key expansion

Claim 1: 20 x speed-up over OpenSSL on same hardware

Claim 2: constant time execution

AES-NI: Encrypting one block (AES256)

step 0: aeskeygenassist(256-bit key) —
round keys in xmm2, xmmg3, ..., Xxmm16

step 1: load plaintext block into xmm1 (128-bit block)

—_

step 2: xor xmm1, xmma2
aesenc xmm1, xmm3
aesenc xmm1, xmm4

— 15 instructions
aesenc xmm1, xmm5

aesenclast xmm1, xmm16

—_

AES-NI: parallelism and pipelining

 Intel Skylake (old): 4 cycles for one aesenc
« fully pipelined: can issue one instruction every cycle

* Intel Icelake: vectorized aesenc (vaesenc)
« vaesenc. compute aesenc on four blocks in parallel
* fully pipelined: can issue one instruction every cycle

Implications:

« AES256 encrypt a single block takes 56 cycles (14 rounds)

« AES256 encrypt 16 blocks on Icelake takes 59 cycles

12

AES256 encrypt on Icelake

To encrypt 16 blocks do: mo0, ..., m15 € {0,1}128

0: m0 | m1 | m2 | m3 | (vaesenc -- 512 bit register zmm1)

1: m4é | m5 | m6 | m7 | (vaesenc)

2: m8 | m9 | m10 | m11 | (vaesenc)

3: m12 [m13 | m14 | m15 | (vaesenc)
¥ (4 cycles)

4: m0' | m1 | m2° | m3 | (vaesenc)

5! m4’ | m& | m6 | m/7° | (vaesenc)

: : ... finish all 14 rounds after 59 cycles
time (cycles) - 13

Abstract view of a block cipher:
PRPs and PRFs

Topics:
1. Abstract block ciphers: PRPs and PRFs
2. Security models for encryption

3. Analysis of CBC and counter mode

14

PRPs and PRFs

 Pseudo Random Function (PRF) defined over (K,X,Y):
F: Kx X = Y

such that exists “efficient” algorithm to evaluate F(k,x)

 Pseudo Random Permutation (PRP) defined over (K,X):
E: KxX - X

such that:
1. Exists “efficient” algorithm to evaluate E(k,x)

2. The function E(Kk, -) is one-to-one

3. Exists “efficient” inversion algorithm D(k,x)

15

Running example

« Example PRPs: 3DES, AES,

AES256: KxX — X where X ={0,1}128 K ={0,1}256

3DES: KxX —» X where X={0,1}%4, K={0,1}168

* Functionally, any PRP is also a PRF.
— A PRP is a PRF where X=Y and is efficiently invertible

— A PRP is sometimes called a block cipher

16

Secure PRFs

e Llet F: KxX —»> Y beaPRF

fFuns[X,Y]: the set of all functions from Xto Y

Se= { F(k;) st keK} < Funs[X)Y]

 Intuition: a PRF is secure if
a random function in Funs[X,Y] is indistinguishable from

a random function in Sg

Size |K|

17

Size [Y™

Secure PRFs

e Llet F: KxX —»> Y beaPRF
<[Funs[X,Y]: the set of all functions from X to Y

S-={ F(k)) st keK?} < Funs[XY]

 Intuition: a PRF is secure if
a random function in Funs[X,Y] is indistinguishable from

a random function in Sg

X e X

f(x) or F(k,x) ?

Secure PRF: defintion

« For b=0,1 define experiment EXP(b) as:
b
'

Chal. b=0: k<K, f<«F(k,) Adv. A
b=1. f<Funs[X,Y]

Xi € X <.;\ %
f(x) J*
|

. . . lb’ e {0,1}
 Def:. F is a secure PREF if for all “efficient” A :

AdVpre[A,F] = |PrEXP(0) = 1] — PHEXP(1) = 1] |

is “negligible.”

An example

Let K=X={0,1}".
Consider the PRF: | F(k, x) =k & x | defined over (K, X, X)

Let’'s show that F is insecure:

C Adversary A : (1) choose arbitrary x, # x4 € X R
(2) query for vy, =1(x,) and vy, =f(x4)
L (3) output 0" if yo D y,=x,D x,, else ‘1,j

Pr[EXP(0) = 0] =1 Pr[EXP(1) = 0] = 1/2"

— Advpge[A,Fl=1 — (1/2") (not negligible)

20

Secure PRP

« For b=0,1 define experiment EXP(b) as:

b
Chal. b=0: k<K, f<«E(k,) Adv. A
b=1. f«Perms[X]
Xi € X <1.;\

f(x) J*
b e {0.1)

 Def. E is a secure PRP if for all “efficient” A :
AdVpre[A,E] = |PHEXP(0) = 1] - PrEXP(1) = 1] |

is “negligible.”

Example secure PRPs

« Example secure PRPs: 3DES, AES,

AES256: Kx X — X where X =1{0,1}1%8
K= {0,1}256

« AES256 PRP Assumption (example):

For all A s.t. tlme(cfl) < 280 AdVPRP[Uqa AE3256] < 2—40

22

The PRP-PRF Switching Lemma

Any secure PRP is also a secure PRF.

Lemma: Let E be a PRP over (K, X).
Then for any g-query adversary A :

| AdvprelA,E] — Advpre[A,E]| < q2/2|X]

(proof follows from bounds on the birthday paradox)

= Suppose |X| is large so that g2/ 2|X| is “negligible”

Then Advpgrp[A,E] “negligible™ = Advpge[A,E] “negligible”

23

Using PRPs and PRFs

Goal: build “secure” encryption from a PRP

24

Incorrect use of a PRP

Electronic Code Book (ECB):

PT: mj m, .
CT: C; C, S
Problem:

—if my=m, then c4=c,

In pictures

Encrypted with AES in ECB

ample plaintext

An ex

(courtesy B. Preneel)

26

How to use a block cipher?

Modes of Operation for
One-time Use Key

Example application:

Encrypted email. New key for every message.

27

Semantic Security for one-time key

- E=(E,D) acipherdefined over (K,M,C)
« For b=0,1 define EXP(b) as:

\b

'

Chal. Adv. A

k<K . Mo,M € M: |mg| =|my|

C < E(k, mb)

|
b’ {0,1}

« Def: E is sem. sec. for one-time key if for all “efficient” A :
Advgs[A,E] = |PrEXP(0)=1] - PrEXP(1)=1] |

is “negligible.”

Semantic security (cont.)

Sem. Sec. = no “efficient” adversary learns “info” about PT
from a single CT.

Example: suppose efficient A can deduce LSB of PT from CT.
Then E = (E,D) is not semantically secure.

be{0,1)
'
Chal. m,, LSB(m,)=0 Adv. B (us)
m,, LSB(m;)=1
ke—K «
Adv. A
c « E(k, my) ‘ C | (given)

LSB(m,)=b

Then Advgg[B, E]=1 = Eis not sem. sec. s

Note: ECB is not Sem. Sec.

ECB is not semantically secure for messages that contain
two or more blocks.

be{0,1)
I

Chal.

ke—K

_ Two blocks _
m, = “Hello World” Adv. A
m; = “Hello Hello”

(C1,Cp) < E(k, M)

|
!

If c,=c, output 1, else output 0

Then Adveg[A, ECB] = 1

30

Secure Constructions

Examples of sem. sec. systems:
1. Advgg[A, OTP] =0 for all A

2. Deterministic counter mode from a PRF F:

* Epererr (kim) =

mo] | m] | ... | m[]
D
F(k,0) | F(k1) | ... |F(kL)
indist. from /
a OTP
o] | o] | ... | oL

= Stream cipher built from PRF (e.g. AES)

Det. counter-mode security

Theorem: For any L>0.
If F is a secure PRF over (K, X,X) then
EpeteTr IS Sem. sec. cipher over (K, XL, XL).

In particular, for any adversary A attacking Epgrotr
there exists a PRF adversary B s.t.:

AdVSs[c/q,, EDETCTR] = 2'AdVPRF[B’ F]

Advpre[B, F] is negligible (since F is a secure PRF)
: AdVSs[UQ, EDETCTR] must be negllglble

32

Modes of Operation for
Many-time Key

Example applications:

1.
2.

File systems: Same AES key used to encrypt many files.

IPsec: Same AES key used to encrypt many packets.

33

Semantic Security for many-time key (cpa security)

Cipher E = (E,D) defined over (K,M,C).
For b=0,1 define EXP(b) as:

fori=1,..., :
be{01}| cChal d Adv. A

—_—»

ke—K Mg, Mg € M: |mig| = [m4]

Ci < E(k, mi,b)

b’ €/{0,1}

—>

if adv. wants ¢ = E(k, m) it queries with m; ;= m; ;=m

Def: E is sem. sec. under CPA if for all “efficient” A :

AdVcpa [A,E] = |PHEXP(0)=1] — PHEXP(1)=1] |
is “negligible.”

Security for many-time key

Fact: stream ciphers are insecure under CPA.

— More generally: if E(k,m) always produces same
ciphertext, then cipher is insecure under CPA.

Chal. |, mp,. Mg € M Adv.
ke_K Co (—E(k, mo)
My, My € M
output O
c « E(k, mp) R if c=cy

If secret key is to be used multiple times =

given the same plaintext message twice,
the encryption alg. must produce different outputs.

35

Nonce-based Encryption

nonce
Alice ﬁ j Bob
=4 é

m, n E(k,m,N)=c ‘g‘é\ ¢, n 5 D(k,c,n)jm

— T E

| !

k

nonce n: a value that changes from msg to msg
(k,n) pair never used more than once

 method 1: encryptor chooses a random nonce, n « N

« method 2. nonce is a counter (e.g. packet counter)
— used when encryptor keeps state from msg to msg

— if decryptor has same state, need not send nonce with CT .

Construction 1:

CBC with random nonce

Cipher block chaining with a random IV (IV = nonce)
\Y m[0] m[1] m[2] m[3]
>? >?_> :i_B >?_>
\Y c[0] c[1] c[2] c[:;]
—
ciphertext

note: CBC where attacker can predict the IV is not CPA-secure. HW.

37

CBC:. CPA Analysis

CBC Theorem: For any L>0,

If E is a secure PRP over (K,X) then

Ecgc is a sem. sec. under CPA over (K, Xt, Xt*1),

In particular, for a g-query adversary A attacking Eqg¢
there exists a PRP adversary B s.t.:

AdvcpalA, Ecgcl £ 2-Advpge[B, E] +(2 g% L2/ [X]

Note: CBC is only secure as longas @g%L? « [X]

/

\

messages enc. with key

max msg length

38

Construction 1": CBC with unique nonce

Cipher block chaining with unique IV (IV = nonce)

unique IV means: (key,IV) pairis used for only one message

\Y m[O] m[1] m[2] m[3]

Yo e o [

E(kz,-) E(ki,:) E(ki,:) E(ki,:) E(ki,:)

IV c;'[O] c[;] c[2v] c[C‘S]

*

\ ciphertext
included only if unknown to decryptor

A CBC technicality: padding

\Y; m[0] m[1] m2] (m[3] i pb

l N — e

P 49 %) Y
E(k’) -

E(k1,°) E(k,)

IV c[O] c[1] c[2] C[é]

pad is
TLS 1.0: if need n-byte pad, n>0, use: |n-1|n-1|+¢n-1| removed
dur
if no pad needed, add a dummy block diﬂfygpﬁon

Construction 2: rand ctr-mode

F: PRF defined over (K,X,Y) where X={0,1, ...,2"1}and Y = {0,1}"

(e.g., n=128)
msg
| B
D
F(k,IV) [F(k,IV+1) ... F(k,IV+L) (counter counts mod 2™)
vV c[0] c[1] . c[L]
ciphertext

IV - chosen at random for every message

note: parallelizable (unlike CBC)
41

Why is this CPA secure?

the set X;: domain of PRF

- e T =Tl
e vt o TiveeL] oo

msg1

| msgs |
e L et T
L e /

CPA security holds as long as intervals do not intersect

e gmsgs, Lblockseach = Pr[intersection]< 2qg?L/ |X]
\ J

needs to be negligible

42

rand ctr-mode: CPA analysis

Randomized counter mode: random IV.

Counter-mode Theorem: For any L>0,
If F is a secure PRF over (K, X,X) then
E-tr is a sem. sec. under CPA over (K, Xt XH1),

In particular, for a g-query adversary A attacking E-1g
there exists a PRF adversary B s.t.:

AdvcpalA, Ecrrl < 2-Advpge(B, F] + 292 L/ [X]

Note: ctr-mode only secure as longas gL <« |X]

Better then CBC !

43

An example

Advcpa [A, Ecrrl < 2-Advpge(B, E] + 2 g% L1/ [X]

g = # messages encrypted with k , L =length of max msg

Suppose we want AdvcpalA, Ectr] < 1/ 231
« Thenneed: q?L/|X]| < 1/232

« AES: |X|=218 = qL12<248

T~

So, after 232 CTs each of len 232, must change key

(total of 254 AES blocks)

Construction 2’: nonce ctr-mode

om0l | mit) | | m

msg

F(k,IV) [F(iIV+1)

F(k,IV+L)

@

c[o]

c[1]

clL]

ciphertext

To ensure F(k,x) is never used more than once, choose |V as:

V:

IV+1:

IV+2:

128 bits
nonce
96 bits 32 bits
nonce 0000001
nonce 0000002

ooooog\

starts at O
for every msg

Comparison: ctrvs. CBC

ctr mode
required primitive PRF
parallel processing Yes
security gh2 L << |X]
dummy padding block No
1 byte msgs . .
1Hx expansi no expansion

(nonce-based)

* for CBC, dummy padding block can be avoided using ciphertext stealing

Summary

PRPs and PRFs: a useful abstraction of block ciphers.

We examined two security notions:
1. Semantic security against one-time.
2. Semantic security against many-time CPA.

Note: neither mode ensures data integrity.

Stated security results summarized in the following table:

Power one-time ke Many-time key CPA and
Goal y (CPA) CT integrity
Sem. Sec. steam-ciphers rand CBC ater
det. ctr-mode rand ctr-mode

47

Attacks on block ciphers

Goal: distinguish block cipher from a random permutation

« if this can be done efficiently then block cipher is broken

Harder goal:
find key k given many c¢; = E(k,m;) for random m;

48

(1) Linear and differential attacks

[BS'89,M'93]

Given many (m;, c;) pairs, can recover key much faster than
exhaustive search

Linear cryptanalysis (overview) : let ¢ = DES(k, m)

Suppose for random k,m:

pr[mli] @mli,] @ cljl@-Dcli] = kil 1-®kll,] | =% +¢
For some «.

For DES, this exists with ¢ =1/22" = 0.0000000477 !

Linear attacks
pr[mlijJo--emli] @ cljje-ocl,] = killo--okl,] | =% +¢

Thm: given 1/¢2 random pairs (m, c=DES(K, m)) then

k[l{]®...®K[l,] = MAJ[m[is]®...em[i,] D cljjl®...aclj,]]
with prob. = 97.7%

= with 1/¢2 inp/out pairs can find k[l{]®...®k[l] intime =1/¢?

Linear attacks

For DES, £¢=1/221 =
with 242 inp/out pairs can find Kk[l,]@...®k[l] in time 242

Roughly speaking: can find 14 key “bits” this way in time 242

Brute force remaining 56-14=42 bits in time 242

Attack time: =243 (<< 2%) with 242 random inp/out pairs

Lesson

A tiny bit of linearly leads to a 24?time attack.

= don’t design ciphers yourself !

(2) Side channel attacks on software AES

Attacker measures the time to compute AES128(k,m) for
many random blocks m.

— Suppose that the 256-byte S table is not in L1 cache at
the start of each invocation

—> time to encrypt reveals the order in which S entries
are accessed

— leaks info. that can compromise entire key

Lesson: don’t implement AES yourself !

Mitigation: AES-NI or use vetted software (e.g., BoringSSL)

53

(3) Quantum attacks

Generic search problem:
Let f: X — {0,1} be a function.
Goal: find xeX s.t. f(x)=1.

Classical computer: best generic algorithm time = O(|X])

Quantum computer [Grover’96] : time = O(|X]|2)

(requires a long running quantum computation)

Quantum exhaustive search

Given m, c=E(k,m) define 1 if E(km)=c

f(k) =
0 otherwise

Grover = quantum computer can find k in time O(|K|"?)

AES128: quantum key recovery time =264

Adversary has access to a quantum computer =

encrypt data using a cipher with 256-bit keys (AES256)

THE END

56

Recap

Secure PRF: F:KxX—=Y and

{f(x) = F(k,x) for k < K} is indist. from random f in Funs[X,Y]

Secure PRP: E:KxX — X , efficiently invertible, and

{m(x) = E(k,x) for k « K} is indist. from random 7 in Perms[X]

How to use a secure PRF and a secure PRP for encryption?
e One-time key (semantic security): det. CTR-mode

e Many-time key (CPA security):
nonce-based CBC, nonce-based CTR mode

Y

