
Programming Assignment 1 Winter 2026

CS 255: Intro to Cryptography

Prof. Dan Boneh Due Wednesday, Feb. 11, 11:59pm

1 Introduction

In many software systems today, the primary weakness often lies in the user’s password. This
is especially apparent in light of recent security breaches that have highlighted some of the weak
passwords people commonly use (e.g., 123456 or password). It is very important, then, that users
choose strong passwords (or “passphrases”) to secure their accounts, but strong passwords can be
long and unwieldy. Even more problematic, the user generally has many different services that use
password authentication, and therefore the user must recall many different passwords.

One way for users to address this problem is to use a password manager, such as BitWarden and
1Password. Password managers make it very convenient for users to use a unique, strong password
for each service that requires password authentication. However, given the sensitivity of the data
contained in the password manager, one must take considerable care to store the information
securely.

In this assignment, you will be writing a secure and efficient password manager. In your implemen-
tation, you will make use of various cryptographic primitives we have discussed in class—notably,
authenticated encryption and collision-resistant hash functions. Because it is ill-advised to imple-
ment your own primitives in cryptography, you should use an established library: in this case, the
PyCryptodome. We will provide starter code that contains a basic template, which you will be
able to fill in to satisfy the functionality and security properties described below.

Caveat: Please do not consider this project as a substitution for a safe password manager. There
are more security considerations that we do not consider in this project to make this password
manager truly secure.

2 Secure Password Manager

2.1 Implementation

In general, a password manager (also called a keychain) application will store its password database
on disk, protected by a strong keychain password. While it is in use, it may store an “unlocked”
representation of the database in memory from which it can provide the password for each desired
domain. Instead of implementing a full standalone password manager application, for this project
you will only be responsible for the core library. Thus, you will not need to implement the interactive
front-end for interacting with the password manager, nor will you need to actually write the contents
to disk. Instead, you will simulate these functionalities by providing features to serialize and
deserialize your data structures to string representations, so that it would be easy to complete a
full password manager application by writing these representations to disk.

1

https://bitwarden.com/
https://1password.com/
https://pycryptodome.readthedocs.io/en/v3.21.0/src/api.html

Your password manager will keep its in-memory password data in a key-value store (KVS), rep-
resented by a Python dictionary whose keys correspond to domain names, and whose values cor-
respond to passwords for that domain. For example, a sample password manager instance might
store the following information:

Key Value
www.google.com password
www.example.com 123456
www.amazon.com 6U)qAlOBy%3SZX$o
www.ebay.com guest

Naturally, writing this information to disk in the clear is not secure. In this assignment, you will
need to preserve both the confidentiality and the integrity of the values in your KVS. Thus, you
will be encrypting all the values (i.e, the passwords for different domains) using an authenticated
encryption scheme, namely AES-GCM. In order to accommodate a potentially large number of
entries in the password manager, you will encrypt and store each record individually in-memory.
In other words, it is not appropriate to encrypt the entire KVS as a single blob. This way, you do
not have to decrypt every entry in the password manager when fetching a single record. We will
also be using HMAC as our pseudorandom function (PRF).

We do not want to leak any information about the domains the user has stored in the password
manager. At the same time, we want to maintain the ability to search for the data corresponding
to a specific domain. In this assignment, the KVS (Python dictionary) storing the password data
should have as its keys the HMAC of each domain name, rather than the actual domain name in the
clear.1 Then, to look up the data corresponding to domain name x, you first compute HMAC(k, x),
where k is the secret key for HMAC, and check whether the result exists as a key in the key-value
store.

If you simply encrypt each domain/password pair in the KVS directly, your implementation will
probably leak some information about the lengths of the passwords. We will not consider such
implementations secure; rather, your implementation must prevent an adversary from learning any
information about the password lengths. (To make this feasible, you may assume that the maximum
length of any password is 64 characters.)

You should use the password-based key derivation function, PBKDF2, to derive keys from a keychain
password provided by the user. We will discuss the details of PBKDF2 later on in the course, but
we explain how to use it in Section 2.3. PBKDF2 is deliberately designed to be slow, and therefore
you want to call it just once to derive a keychain key k. Once you have the output k of PBKDF2,
you can use it as a key for HMAC to derive the two sub-keys you need: one sub-key to MAC the
domain names, and one sub-key for encrypting passwords using AES-GCM. To derive these two
sub-keys you can evaluate HMAC at two different arbitrary values using k as the HMAC key. Here
we are using HMAC as a secure PRF.

Note that a secure password manager is not allowed to include the keychain password (or even a
hash of it or any other values that would leak information about it), or any of the secret keys used,
in the serialized password database on disk. Additionally, you should assume that an adversary
has access to your source code – this means you cannot embed any values you hope to hide from
the adversary in your code.

1Technically, you will need to use some serialized string representation (like Base64) of the HMAC value.

2

As another layer of defense, you will be asked to produce a SHA-256 checksum of the entire contents
of the database when it is serialized for disk storage. This will be used to defend against certain
attacks described in the next section.

2.2 Threat model

When designing any system with security goals, it is important to specify a threat model: i.e., we
must precisely define the power of the adversary, as well as the condition the adversary must satisfy
in order to be considered to have “broken” the system. Thus, we will now specify the threat model
for our secure password manager, in the form of a security game (of the same flavor as the PRF
or CPA games). In particular, just as the CPA game allows the adversary to specify messages of
its choice, our definition will seem to give the adversary a great deal of power over the contents of
the password database. It is important to remember that we must make such strong assumptions
when attempting to show that a system is secure for general use, because we have no idea under
what circumstances it may end up being deployed.

Our security game proceeds as follows. As usual, the password manager will play the role of the
challenger—interacting with another implicit party, the disk storage—while the adversary will make
a series of adaptive queries that determine the behavior of the system. Some of the adversary’s
queries may include a contingency for each of two possible experiments—as in experiments 0 and
1 in the CPA security game—and, as in the CPA game, the “experiment bit” parameter, b, will
determine which series of queries the challenger actually executes. Each query will take one of the
following forms:

1. Specify values ⟨domain, password0, password1⟩ to be added to the database. In experiment 0,
the challenger must run the password manager algorithm to add the domain-password pair
⟨domain, password0⟩ to the database, while in experiment 1, the challenger must run the same
algorithm, but on the pair ⟨domain, password1⟩.

2. Specify a key (domain) that the challenger must remove from the password database.

3. Specify that the challenger must serialize the database state to “disk”, whereupon the ad-
versary will receive the entire result of the serialization, and will be able to replace it with
an alternative of its choice (which must then immediately be deserialized by the challenger,
running the password manager algorithm).

4. Specify a key (domain) for authentication, at which point the challenger (again running the
password manager algorithms) must send the adversary the password corresponding to that
domain.2 These queries are restricted as explained in the bullet point below.

As in the PRF and CPA security games, we say that a password manager is secure if all computa-
tionally efficient adversaries have only negligible advantage in the game described above. (i.e. the
adversary’s probability of outputting 1 as its guess of the experiment bit b differs only by a negli-
gible amount when in experiment 0 and when in experiment 1.) Unlike the PRF and CPA games,
however,3 we will need an additional restriction for our security definition here. In particular, we
will only allow adversaries whose queries are “admissible” in the following sense:

2This ability models the fact that in real life, the adversary may control a service for which the client has stored
a password.

3But similar to the CCA game.

3

• for every query of type (4) where the adversary requests the password for a domain d, the
following must hold: on the last query of type (1) setting the password for d (if there was
such a query at all), it must be that password0 = password1.

Without this restriction the adversary could trivially win the game: using a query of type (1), it
could cause the challenger to add a password for some domain d, under the adversary’s control,
where the password value differed between experiments 0 and 1; and then request using a query of
type (4) the password for domain d, thereby revealing which experiment the challenger is executing.

This threat model captures the fact that even if the adversary is able to exert substantial control
over the contents of the password database—and even if it controls some malicious remote servers—
it still cannot learn anything about the passwords in the database for any other servers.

For this project, you will not be required to give a formal proof that your system fulfills the strong
security definition we have just stated. However, your system should be secure under this threat
model (and a proof should exist, even though you do not have to produce it).

However, you should note that, to satisfy such a strong definition, there are a number of interesting
attacks that you will have to defend against, most notably swap attacks and rollback attacks. In
a swap attack, the adversary interchanges the values corresponding to different keys. For instance,
the adversary might switch the entries for www.google.com and www.evil.com. Then, when the
user (for whatever reason) tries to authenticate to www.evil.com, the user inadvertently provides
its credentials for www.google.com. It should be easy to see that an adversary able to perform a
swap attack can easily win the security game we outlined above. In your implementation, you must
provide a defense against a swap attack.

In a rollback attack, the adversary can replace a record with a previous version of the record. For
example, suppose the adversary was able to retrieve the KVS in the example above. At some later
time, the user changes her/his password for www.google.com to google_pwd, which would update
the value for www.google.com in the KVS. However, the adversary can replace this updated record
with the previous record for www.google.com. Note that, as in the previous section, merely using
authenticated encryption does not protect against this attack. Rather, in your implementation,
you should compute a SHA-256 hash of the contents of the password manager. You can assume
this hash value can be saved to a trusted storage medium (inaccessible to the adversary)—such as
a flash drive on the user’s person. Whenever you load the password manager from disk, you should
verify that the hash is valid. This way, you can be assured that the contents of the KVS have not
been tampered with.

Depending on your design, your defense against rollback attacks might also turn out to protect
against the swap attacks described earlier. However, you must still implement an explicit
defense against swap attacks. In other words, the defenses you develop must work independently
of one another. Even if a SHA-256 hash is not provided from trusted storage, your scheme must
be secure against an adversary that swaps two records.

2.3 Using PBKDF2

In the previous section, we did not give a precise formulation of the security properties we are
assuming of PBKDF2. To give the full picture, we would need to work in a framework called the
“random oracle model,” which would take us too far afield. Instead, this section will provide some

4

practical guidelines on how to use PBKDF2.

Although we will discuss this in more detail towards the end of the course, it is important to
remember that when deriving anything using passwords, we should always use a randomly generated
salt. The recommended length of the salt is 128 bits. The key derived from PBKDF2 will be a
function of the provided password and the salt. To generate salt for a new Keychain, PyCryptodome
provides a function get_random_bytes(). If you wish to derive the same key again in the future,
such as when you’re loading the keychain from disk, you will need to store the salt in the clear.

The idea behind salting passwords is to prevent an offline dictionary attack, where an attacker
derives keys for commonly used passwords, and tries to see if they work for different users’ keychains.
Salting slows the attackers down since they will have to do a separate dictionary attack for each
user. To make this even more difficult, PBKDF2 is deliberately designed to be a slow function so
as to rate limit an attacker trying to brute force it.

3 PyCryptodome

3.1 Using PyCryptodome

The PyCryptodome API is exposed to you in password_manager.py via the Crypto imports already
included. For example, to hash a message with SHA-256, you could write in code:

msg_hash = SHA256.new(str_to_bytes("CS 255 Rocks!")).digest()

Note that str_to_bytes is a type conversion function that we provide. More details are below.

We encourage you to check out the docs to find out how to use the algorithms required for this
project! You may generally use SHA-256 as a hash function when one is required.

3.2 Master password in PyCryptodome

Keys in PyCryptodome are stored as bytes objects. The keychain password string can be converted
to bytes using the provided str_to_bytes function, which will be described in subsection 5.2.
Note: This key is NOT sufficiently secure to use as the main key of your password
manager. You must use PBKDF2 to produce a more cryptographically secure key.

4 API description

Here are descriptions of the functions you will need to implement. For each function, we also
prescribe the run-time your solution must achieve (as a function of the number of entries n in the
password database). We will assume that the input values (domain names and passwords) are of
length O(1), and regard each operation on an efficient dictionary/object/in-memory-key-value-store
as a single step.

5

https://pycryptodome.readthedocs.io/en/v3.21.0/src/api.html

4.1 @staticmethod new(keychain_password)

• keychain_password: password used to protect the keychain (str)

• Returns: Keychain object

• Run-time: O(1)

This static method should create a new KVS. This function is also responsible for generating the
necessary keys you need to provide for the various functionality of the password manager. Once
initialized, the returned password manager should be in ready to support the other functionality
described in the API.

4.2 @staticmethod load(keychain_password, repr, trusted_data_check)

• keychain_password: password used to authenticate keychain (str)

• repr: JSON encoded serialization of the keychain (str)

• trusted_data_check: SHA-256 hash of the keychain; note that this is an optional parameter
that is used to check integrity of the password manager (Optional[bytes])

• Returns: Keychain object

• Run-time: O(n)

This static method loads the keychain state from a serialized representation. You can assume that
repr is a valid serialization generated by a call to keychain.dump(). This function should verify
that the given keychain_password is valid for the keychain. If the parameter trusted_data_check
is provided,4 this function should also affirm the integrity of the KVS. If tampering is detected,
this function should raise a ValueError. If everything passes, the function should return the
Keychain object represented by repr. if keychain_password is invalid, the function should raise a
ValueError.

4.3 __init__(...)

• Your constructor may accept any parameters you would like.

• No return value

• Run-time: O(1)

• We will never invoke your constructor directly. Rather, we expect that your implementations
of new and load will call it in some way.

• After the constructor has completed, we should be able to successfully call any other function
in this API.

4In Python, if an argument to a function is not provided, its value will be the special sentinel value None. You
can test that a value is not None using the expression: x is not None.

6

4.4 dump()

• Returns: tuple consisting of a str and a bytes, where the first is a JSON encoded serializa-
tion of the keychain and the second is a SHA-256 hash of the contents of the keychain

• Run-time: O(n)

This method should create a JSON encoded serialization of the keychain, such that it may be loaded
back into memory via a subsequent call to keychain.load. It should return an array consisting
of this, and also of the SHA-256 hash of the keychain contents (which is to be stored in trusted
storage, and used to prevent rollback attacks).

4.5 get(domain)

• domain: domain name of entry to fetch (str)

• Return: Optional[str] (the password associated with the requested domain, None if not
found)

• Run-time: O(1)

If the requested domain is in the KVS, then this method should return the the saved data associated
with the domain. If the requested domain is not in the KVS, then this method should return None.

4.6 set(domain, password)

• domain: domain name of entry to add to the password manager (str)

• password: password associated with the given domain to store in the password manager (str)

• No return value

• Run-time: O(1)

This method should insert the domain and associated data into the KVS. If the domain is already
in the password manager, this method will update its value. Otherwise, it will create a new entry.

4.7 remove(domain)

• domain: domain name of entry to fetch (str)

• Return: bool (True if record with the specified name is found, False otherwise)

• Run-time: O(1)

If the requested domain is in the KVS, then this method should remove the record from the KVS.
The method returns True in this case. Otherwise, if the specified domain is not present, return
False.

7

5 Hints and Summary

5.1 Setup Instructions

You should run your code using Python. The setup is fairly straightforward: if you don’t have
it already, install any Python version ≥ 3.8 on your system; you may have this by default, or
you can install a new version using Conda or from https://www.python.org/downloads/. If you
already have Python installed, please make sure that it is version 3.8 or greater. After
installing it, you should be able to run the python3 command in your command line. Then, extract
the starter code and cd into the directory proj1_starter. Finally, run python3 -m pip install
-r requirements.txt to install the pycryptodome==3.21.0 and pytest==8.3.4 packages. Other
versions of these packages will likely work, but the code has been tested and will be evaluated
with these package versions. We have provided a simple test suite, which you can run using the
command pytest from this directory.

The full set of tests we are running to grade your assignment are provided on Gradescope. You
can check your assignment against these tests by uploading your solution file. Recall that you will
have to explain why your code is secure in the short-answer section.

5.2 Datatypes

The API that you will implement will take inputs (such as the keychain password, domain names,
and website passwords) as regular strings because this is the most natural type for a client inter-
acting with your library. The PyCryptodome library uses bytes objects as inputs and outputs for
all of its functions because these can contain arbitrary binary data. This includes auxiliary data
such as salts, nonces, and associated data for authenticated encryption.

The problem with the bytes type is that it does not serialize well using json.dumps. Thus we need
a third representation for binary data that can be used in the KVS and dumped and loaded easily.
We recommend using Base64 encoded strings, and we provide helper functions to convert back and
forth between buffers and Base64 strings.

The provided conversion functions are as follows:

• str_to_bytes(s: str) -> bytes

Converts a plaintext string into a bytes object that can be used with PyCryptodome functions.
Use this to pass a domain name into HMAC.new, for example.

• bytes_to_str(b: bytes) -> str

The inverse of str_to_bytes. Converts a bytes object representing a plaintext (for example,
the result of decryption) back into a string.

• encode_bytes(b: bytes) -> str

Converts a bytes object containing arbitrary bytes into a Base64-encoded string. This string
will work as a key in a Python dictionary and will be serialized correctly. It is important to
use this function rather than trying to dump a bytes object directly.

8

https://www.python.org/downloads/
https://docs.python.org/3/library/base64.html

Note that Base64 strings may be compared for equality, but you should not attempt to modify
the underlying binary data by manipulating a Base64 string.

• decode_bytes(hex_str: str) -> bytes

The inverse of encode_bytes. Used to convert Base64 strings back to bytes for use in
PyCryptodome functions.

• dict_to_json_str(d: dict) -> str

Converts a dictionary (including nested dictionaries) into its JSON representation as a string.

• json_str_to_dict(json_str: str) -> dict

Converts a JSON string into a dictionary (possibly nested).

The implementation of these functions can be found in the util.py file of the starter code.

5.3 Implementation Details

• All the code you will have to write will be in the file password_manager.py. Please do not
write any code in another file, since our auto-grader will be assuming that you haven’t.

• You can have a look at the tests being run in the file test_password_manager.py. You are
always welcome to write more tests to make sure your implementation satisfies the require-
ments, but you are not required to, and we will not be grading your tests. The tests are
written using the Pytest framework (https://pytest.org/) and should be fairly readable.

• Serialization and deserialization of your password database (for the load and dump) functions
should be done using the dict_to_json_str and json_str_to_dict provided functions. Fur-
ther, the dictionary that you serialize should have the key-value store that you use for your
domain names and passwords stored internally in a key called kvs (and you should use this
field when you’re restoring your keychain – in particular, if this field is modified, your object
should have a modified set of domains and passwords). This is just to facilitate autograding.
The last few tests in our suite is there to help you make sure that you’re including this field
(although it does not make sure you’re using it when restoring).

• If your application detects tampering with any of its values at any point (like, say, a swap
attack), it should raise a ValueError. We will not test what exception is raised; it suffices
to raise a ValueError with an English description of the potential tampering (e.g., raise
ValueError("Checksum failed!"). Also note that most PyCryptodome errors inherit from
ValueError already.

• If you need random data, PyCryptodome provides a get_random_bytes() function. This
function has been imported for you in the starter code.

• All functions should make at most one call to PBKDF2.

• The only thing you should assume about SHA-256 is that it is collision resistant.

9

https://pytest.org/

5.4 Summary of requirements

To summarize, you must implement a secure password manager that satisfies the following prop-
erties:

• The underlying in-memory data structure for the password manager should be a key-value
store (Python dictionary), where the keys correspond to domain names and the values corre-
spond to the passwords for the given domain names.

• The password manager should be protected by a keychain password. Your implementation
cannot include the keychain password (or any values that would leak information about it)
in the serialized password database.

• When you need to derive a key from a password, you should use PBKDF2.

• Your system should satisfy the security properties described in the threat model (Section 2.2).
In particular, you should defend against swap attacks and rollback attacks.

• You should implement all of the API functions (Section 4) with the parameters described
there. Notably, your defenses for swap attacks and rollback attacks should be independent—
your system must continue to be secure against swap attacks even if a hash value from trusted
storage is not provided.

• You also need to submit answers to the short-answer questions from Section 6.

Please submit only your password_manager.py file to the “Project 1 Code Submis-
sion” Gradescope assignment when you are finished.

5.5 Helpful Resources

• The PyCryptodome docs here.

6 Short-answer Questions

In addition to your implementation, please include answers to the following questions regarding
your implementation. Your answers need not be long, but should include important details.

Please submit (preferably) typed or handwritten answers to the “Project #1 Short-
answer Questions” assignment on Gradescope (separate from programming compo-
nent).

1. Briefly describe your method for preventing the adversary from learning information about
the lengths of the passwords stored in your password manager.

2. Briefly describe your method for preventing swap attacks (Section 2.2). Provide an argument
for why the attack is prevented in your scheme.

10

https://pycryptodome.readthedocs.io/en/v3.21.0/src/api.html

3. In our proposed defense against the rollback attack (Section 2.2), we assume that we can store
the SHA-256 hash in a trusted location beyond the reach of an adversary. Is it necessary to
assume that such a trusted location exists, in order to defend against rollback attacks? Briefly
justify your answer.

4. Because HMAC is a deterministic MAC (that is, its output is the same if it is run multiple
times with the same input), we were able to look up domain names using their HMAC values.
There are also randomized MACs, which can output different tags on multiple runs with the
same input. Explain how you would do the look up if you had to use a randomized MAC
instead of HMAC. Is there a performance penalty involved, and if so, what?

5. In our specification, we leak the number of records in the password manager. Describe an
approach to reduce the information leaked about the number of records. Specifically, if there
are k records, your scheme should only leak ⌊log2(k)⌋ (that is, if k1 and k2 are such that
⌊log2(k1)⌋ = ⌊log2(k2)⌋, the attacker should not be able to distinguish between a case where
the true number of records is k1 and another case where the true number of records is k2).

6. What is a way we can add multi-user support for specific sites to our password manager
system without compromising security for other sites that these users may wish to store
passwords of? That is, if Alice and Bob wish to access one stored password (say for nytimes)
that either of them can get and update, without allowing the other to access their passwords
for other websites.

11

	Introduction
	Secure Password Manager
	Implementation
	Threat model
	Using PBKDF2

	PyCryptodome
	Using PyCryptodome
	Master password in PyCryptodome

	API description
	@staticmethod new(keychain_password)
	@staticmethod load(keychain_password, repr, trusted_data_check)
	__init__(...)
	dump()
	get(domain)
	set(domain, password)
	remove(domain)

	Hints and Summary
	Setup Instructions
	Datatypes
	Implementation Details
	Summary of requirements
	Helpful Resources

	Short-answer Questions

